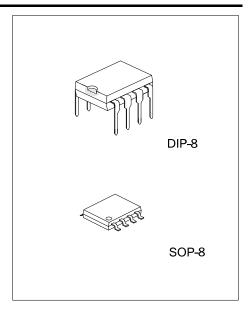
UTC UNISONIC TECHNOLOGIES CO., LTD

UC3844/45

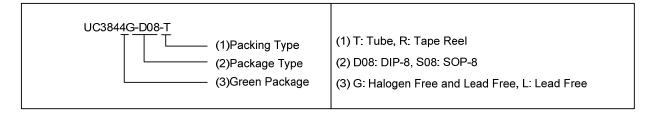

LINEAR INTEGRATED CIRCUIT

HIGH PERFORMANCE **CURRENT MODE PWM** CONTROLLERS

DESCRIPTION

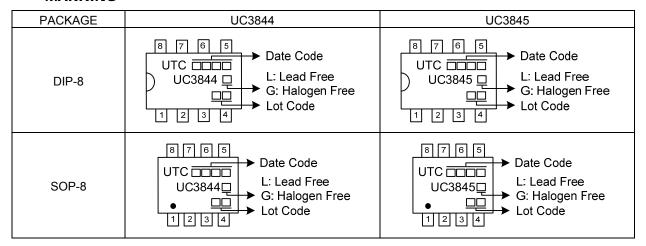
The UTC UC3844/3845 are high performance fixed frequency current mode controllers that specifically designed for Off-Line and DC to DC converter applications with minimal external parts count.

The differences between UC3844 and UC3845 are the maximum duty cycle ranges and under-voltage lockout thresholds. The UC3844 ideally suited to off-line applications with UVLO thresholds of $16V_{(ON)}$ and $10V_{(OFF)}$, and UC3845 has UVLO thresholds of $8.5V_{(ON)}$ and $7.6V_{(OFF)}$ for lower voltage applications.

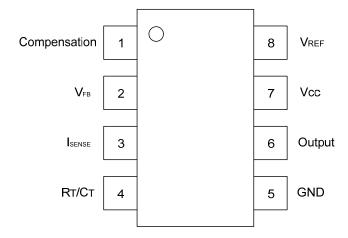


FEATURES

- * Operation output switching frequency up to 500 kHz
- * Automatic feed forward compensation
- * Latching PWM for cycle-by-cycle current limiting
- * High current totem pole output
- * Internally trimmed reference with under voltage lockout
- * UVLO with hysteresis
- * Low startup and operating current

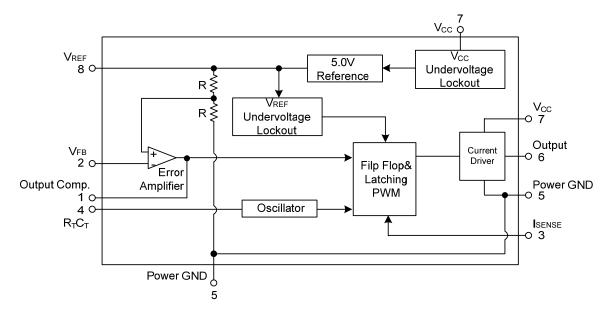

ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
UC3844L-D08-T	UC3844G-D08-T	DIP-8	Tube	
UC3844L-S08-R	UC3844G-S08-R	SOP-8	Tape Reel	
UC3845L-D08-T	UC3845G-D08-T	DIP-8	Tube	
UC3845L-S08-R	UC3845G-S08-R	SOP-8	Tape Reel	



www.unisonic.com.tw 1 of 7 QW-R103-010.O

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	FUNCTION
1	Compensation	Error amplifier output, this pin is made available for loop compensation.
2	V _{FB}	Voltage Feedback, the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	Isense	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The Oscillator frequency and maximum output duty cycle are programmed by connecting resistor R_T to Vref and capacitor C_T to ground. Operation to 1 MHz is possible.
5	GND	Power ground.
6	Output	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sunk by this pin. The output switches at one-half the oscillator frequency.
7	V_{CC}	Positive supply.
8	V_{REF}	Reference output, provides charging current for capacitor C _T though resistor R _T .

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Current Sense and Voltage feedback Inputs		V _{IN}	-0.3 ~ +5.5	V
Supply Voltage (Low Impedance Source)		V _{cc}	30	V
Supply Voltage (I _{CC} <30mA)		V _{cc}	Self Limiting	V
Total Power Supply and Zener Curre	ent	$(I_{CC}+I_Z)$	30	mA
Error Amp Output Sink Current		I _{SINK}	10	mA
Output Current, Source or Sink (Note 2)		l _{out}	1.0	Α
Output Energy (Capacitive Load per cycle)		W	5.0	μJ
Power Dissipation	DIP-8		1250	mW
	SOP-8	P _D	800	mW
Junction Temperature		TJ	+150	°C
Operation Temperature		T _{OPR}	0 ~ +70	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
hungtion to Aughiout	DIP-8	0	100	°C/W
Junction to Ambient	SOP-8	ÐJA	156	°C/W

■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{CC}=15V, R_T=10k, C_T=3.3nF, 0^{\circ}C \le T_A \le 70^{\circ}C, unless otherwise specified)$

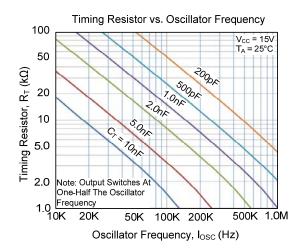
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
REFERENCE SECTION								
Reference Output Voltage		V_{REF}	I _{OUT} =1.0mA,T _J =25°C	4.9	5.0	5.1	V	
Line Regulation		$ riangle V_{OUT}$	V _{CC} =12V ~ 25V		2.0	20	mV	
Load Regulation		$ riangle V_{OUT}$	I _{OUT} =1.0mA ~ 20mA		15	30	mV	
Temperature Stability		ts			0.2		mV/°C	
Total Output Variation over Lir Load, Temperature	ne,	V_{REF}		4.82		5.18	V	
Output Noise Voltage		e _N	f=10Hz ~ kHz, T _J =25°C		50		μV	
Long Term Stability		S	T _A =125°C for 1000 Hours		5		mV	
Output Short Circuit Current		I _{SC}		-50	-155	-280	mA	
OSCILLATOR SECTION								
Oscillator Voltage Swing		V_{OSC}			1.6		V	
Discharge Current		I_{DSG}	V _{OSC} =2.0V, T _J =25°C		10.8		mA	
Fraguenay		fosc	T _J =25°C	47	52	57	kHz	
Frequency			0°C ≤ T _A ≤ 70°C	46		60		
Frequency Change with Voltage	ge	$\Delta f_{OSC}/\Delta V$	V _{CC} =12V ~ 25V		0.2	1.0	%	
Frequency Change with Temp	erature	$\Delta f_{OSC}/\Delta T$	0°C ≤ T _A ≤ 70°C		5.0		%	
ERROR AMPLIFIER SECTIO	N							
Voltage Feedback Input		V_{FB}	V _{OUT} =2.5V	2.42	2.50	2.58	V	
Output Voltage Swing	High	V_{OH}	R _L =15k to ground, V _{FB} =2.3V	5.0	6.2		V	
Output Voltage Swilly	Low	V_{OL}	R_L =15k to V_{REF} , V_{FB} =2.7V		8.0	1.1	V	
Output Current	Sink	I _{SINK}	V _{OUT} =1.6V, V _{FB} =2.7V	2.0	12		mA	
Output Current	Source	I _{SOURCE}	V_{OUT} =5.0V, V_{FB} =2.3V	-0.5	-1.0			
Input Bias Current		I _{I(BIAS)}	V _{FB} =2.7V		-0.1	-2.0	μA	
Open Loop Voltage Gain		G_{VO}	V _{OUT} =2.0V ~ 4.0V	65	90		dB	
Power Supply Rejection Ratio		PSRR	V _{CC} =12V ~ 25V	60	70		dB	
Unity Gain Bandwidth		GB_W	T _J =25°C	0.7	1.0		MHz	

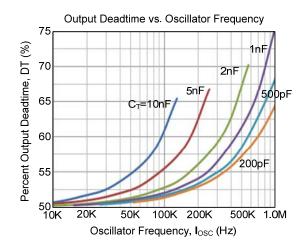
^{2.} Maximum package power dissipation limits must be observed.

■ ELECTRICAL CHARACTERISTICS (Cont.)

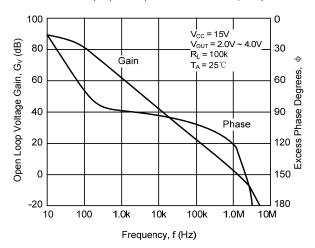
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT SENSE SECTI	ON						
Current Sense Input Voltage Gain (Note 2, 3)		G _V		2.85	3.0	3.15	V/V
Maximum Current Sense I Threshold (Note 2)	nput	$V_{I(THR)}$		0.9	1.0	1.1	٧
Input Bias Current		I _{I(BIAS)}			-2.0	-10	μA
Power Supply Rejection R	atio	PSRR	V _{CC} =12V ~ 25V (Note 4)		70		dB
Propagation Delay		t _{PLH(IN/OUT)}			150	300	ns
OUTPUT SECTION							
	Low	V _{OL}	I _{SINK} =20mA		0.2	0.8	V
Output Voltage	LOW	V OL	I _{SINK} =200mA		1.6	2.2	V
Output Voltage	High	V _{OH}	I _{SINK} =20mA	11	13.5		V
	riigii		I _{SINK} =200mA	11	13.4		V
Output Voltage with U _{VLO} A	Activated	$V_{OL(UVLO)}$	V _{CC} =6.0V, I _{SINK} =1.0mA		0.7	1.2	V
Output Voltage Rise Time		t _R	C _L =1.0nF, T _J =25°C		50	150	ns
Output Voltage Fall Time		t _F	C _L =1.0nF, T _J =25°C		50	150	ns
UNDERVOLTAGE LOCK	OUT SECTION	ON					
Startup Threshold	UC3844	V_{THR}		14.5	16.0	17.5	V
Startup TilleShold	UC3845	V THR		7.8	8.4	9.0	V
Minimum Operating	UC3844	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		8.5	10.0	11.5	V
Voltage After Turn-On	UC3845	$V_{CC(MIN)}$		7.0	7.6	8.2	V
PWM SECTION							
Duty Cyala	MAX	DC _{MAX}		47	48	50	%
Duty Cycle	MIN	DC _{MIN}				0	%
TOTAL DEVICE							
Power Supply Zener Voltage		Vz	I _{CC} =25mA	30	36		V
Power Supply Current			Start Up		0.25	0.5	mA
(Note 4)		I _{CC}	Operating		12	17	mA
,	ulaa taabaia	l	during test to maintain junction	n tomporo	L		

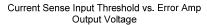
Notes: 1. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

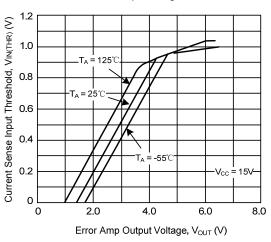

2. This parameter is measured at the latch trip point with V_{FB} =0V.

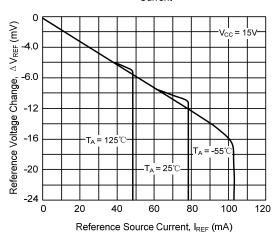

3. Comparator gain is defined as: ΔV Output Compensation A_{V} =

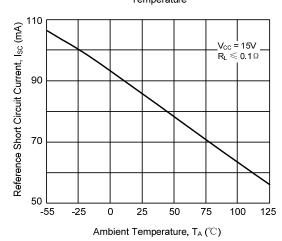
ΔV Current Sense Input

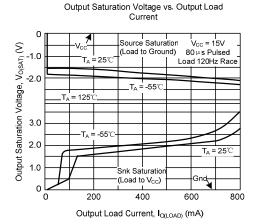

4. Adjust V_{CC} above the startup threshold before setting to 15V.

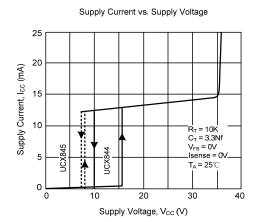

■ TYPICAL CHARACTERISTICS




Error Amp Open Loop Gain Phase vs. Frequency




Reference Voltage Change vs. Reference Source Current



Reference Short Circuit Current vs. Ambient Temperature

■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.