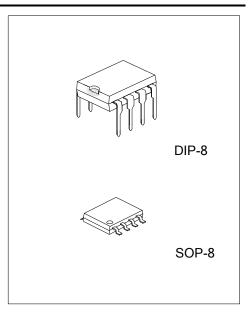
UNISONIC TECHNOLOGIES CO., LTD

U2043

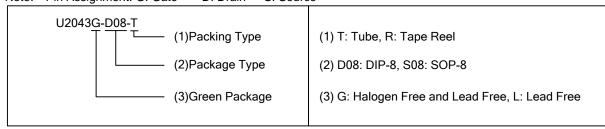
LINEAR INTEGRATED CIRCUIT

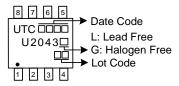

FLASHER, SHUNT, PILOT LAMP TO GND OR VRATT

DESCRIPTION

The UTC U2043 is designed to use in relay-controlled automotive flashers where a high EMC level is required. A lamp outage is indicated by frequency doubling during hazard mode as well as direction mode. The pilot lamp can be connected either to V_{Batt} or GND.

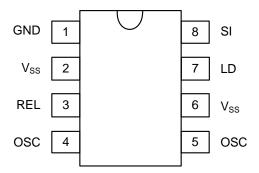
FEATURES


- *Temperature and voltage compensated frequency
- *Warning indication of lamp failure by means of frequency doubling
- * Minimum lamp load for flasher operation ≥10 W
- *Relay output with high current carrying capacity and low saturation voltage


ORDERING INFORMATION

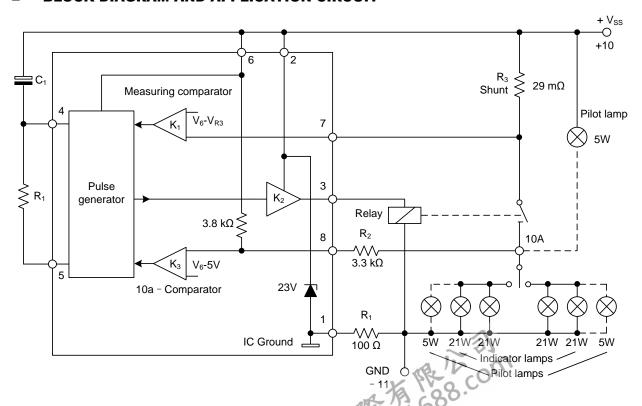
Order	Dealters	Doolsing		
Lead Free	Halogen Free	Package	Packing	
U2043L-D08-T	U2043G-D08-T	DIP-8	Tube	
U2043L-S08-R	U2043G-S08-R	SOP-8	Tape Reel	

Pin Assignment: G: Gate S: Source Note: D: Drain


MARKING

Gwww.flying1688.com www.unisonic.com.tw 1 of 4

^{*}Low susceptibility to EMI


■ PIN CONFIGRATION

■ PIN DESCRIPTION

PIN NO.	SYMBOL	DESCRIPTION
1	GND	IC ground
2	V_{SS}	Supply voltage, V _{SS} . Power
3	REL	Relay control output (driver)
4	osc	Oscillator (C1)
5	osc	Oscillator (R ₁)
6	V_{SS}	Supply voltage, Sense
7	LD	Lamp failure detection
8	SI	Start input (10a)

■ BLOCK DIAGRAM AND APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Reference point Pin 1)

PARAMETERS			SYMBOL	RATINGS	UNIT
Supply Voltage	upply Voltage Pins 2, 6		V _{SS}	16.5	V
Surge Forward Current					
$t_p = 0.1 ms$ Pins 2, 6			I _{FSM}	1.5	Α
$t_p = 2ms$ Pins 2, 6		I _{FSM}	1.0	Α	
$t_p = 2ms$ Pin 8		I _{FSM}	50	mA	
Output Current Pin 3		I _{OUT}	0.3	Α	
Power Dissipation $T_{\Lambda} = 95^{\circ}C$		DIP-8	- P _D	420	mW
		SOP-8		340	mW
IPower Dissipation $T_A = 60^{\circ}C$		DIP-8	P _D	690	mW
		SOP-8		560	mW
Junction Temperature			TJ	+150	°C
Ambient Temperature		T _A	-40 ~ + 95	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

THERMAL DATA

PARAMETERS	SYMBOL	RATINGS	UNIT	
TI 15 : 4 /1 :: 4 A 1: 0	DIP-8	θ_{JA}	110	K/W
Thermal Resistance (Junction to Ambient)	SOP-8		160	K/W

ELECTRICAL CHARACTERISTICS

(V_{SS} (+10, Pins 2 and 6) = 12V. Reference point ground (-11), T_A = 25°C, unless otherwise specified)

		TEST CONDITIONS				LINUT
PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage Range	V _{SS} (+10)	0		9~15		V
Relay Output	V _{OUT}	Saturation voltage, I_{OUT} =150mA, V_{SS} = 9V			1.0	V
Supply current	laa	Dark phase or stand-by		4.5	8	mA
Supply current	I _{SS}	Bright phase		7.0	11	mΑ
Relay Output Reverse Current	I _{OUT}				0.1	mA
Relay Coil Resistance	R_L		60			Ω
Start Delay	t _{ON}	First bright phase			10	ms
Frequency Determining Resistor	R ₁		6.8		510	kΩ
Frequency Determining Capacitor	C ₁				47	μF
Frequency Tolerance	Δf_1	Normal flashing, f1 excluding the tolerance of R ₁ and C ₁	-5		+5	%
Dright David	Δf_1	Basic frequency f ₁	47		53	%
Bright Period	Δf_2	Control frequency f ₂	37		45	%
Frequency Increase	f ₂	Lamp outage	2.15xf1		2.3xf1	Hz
	V_{R3}	$V_{SS} = 15V$ Pin 7	75	86	97	mV
Control Signal Threshold	V_{R3}	$V_{SS} = 9V$	56	66	76	mV
	V_{R3}	V _{SS} = 12V	66	77	87	mV
Leakage Resistance	R _{LEAK}	10a to GND		2	5	kΩ
Lamp Load	P_L		10			W
Note: Typical values under normal of	operation in	n application circuit.	2. COL	7		
UTC UNISONIC TECHNO WWW.unisonic.com.tt	LOGIES (O., LTD			QW-F	3 of 4 R121-008.F

■ FUNCTIONAL DESCRIPTION

Pin 1, GND, IC ground

In the case of battery reversal, resistor R_4 to ground (-11) will protect the IC against damage. An integrated protection circuit together with external resistances R_2 and R_4 limits the current pulses in the IC.

Pin 2, Supply voltage, V_{SS} - Power

On the PCB connection, the arrangement of the supply connections to Pin 2 must be so as to ensure that, the resistance of V_{SS} to Pin 6 is lower than that to Pin 2.

Pin 3, Relay control output (driver)

The relay control output is a high-side driver with a low saturation voltage and capable to drive a typical automotive relay with a minimum coil resistance of 60Ω .

Pin 4 and 5 Oscillator (C1 and R1)

Flashing frequency, f₁, is determined by the R₁C₁ components as follows (see Application Citcuit):

$$f_1 \approx \frac{1}{R_1 \times C_1 \times 1.5} Hz$$

where

 $C_1 \le 47 \mu F$

 $R_1 = 6.8k\Omega$ to $510k\Omega$

In case of a lamp outage, the oscillator frequency is switched to the lamp outage frequency f_2 with $f_2 \approx 2.2 \times f_1$. Duty cycle in normal flashing mode: 50%

Duty cycle in lamp outage mode: 40% (bright phase)

Pin 6, Supply voltage, Sense

A minimized layer resistance from point V_S /shunt to Pin 6 is recommended to accurate monitoring via the shunt resistor.

Pin 7, Lamp outage detection

The lamp current is monitored via an external shunt resistor R_3 and an internal comparator K_1 with its reference voltage of typ. 77mV ($V_{SS} = 12V$). The outage of one lamp out of two lamps is detected according to the following calculation:

Nominal current of 1 lamp: 21W / (V_{SS} = 12V): I_{lamp} = 1.75A

Nominal current of 2 lamps: $2 \times 21W / (V_{SS} = 12V)$: $I_{lamp} = 3.5A$.

The detection threshold is recommended to be set in the middle of the current range: Ioutage ≈ 2.7A.

Thus the shunt resistor is calculated as:

$$R_3 = V_T (K1) / I_{outage}$$

$$R_3 = 77 \text{mV} / 2.7 \text{A} \approx 29 \text{m}\Omega.$$

Comparator K1's reference voltage is matched to the characteristics of filament lamps (see "control signal threshold" in the data part).

The combination of shunt resistor and resistance of wire harness prevents Pin 7 from a too high voltage in case of shorted lamps.

Pin 8, Start input

Start condition for flashing: the voltage at Pin 8 has to be less than V_{SS} - 5V (flasher switch closed).

Humidity and dirt may decrease the resistance between 10a and GND. If this leakage resistance is $> 5k\Omega$ the IC is still kept in its off-condition. In this case the voltage at Pin 8 is greater than V_{SS} - 5V.

During the bright phase the voltage at Pin 8 is above the K2 threshold, during the dark phase it is below the K3 threshold. For proper start conditions a minimum lamp wattage of 10W is required.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.