

FEATURES

- 2.5V to 5.5V input voltage range
- Up to 1.5A Output Current
- 170/130mΩ Internal Power MOSFET Switch
- Stable with Low ESR Output Ceramic Capacitors
- Up to 95% Efficiency
- Less than 1µA Shutdown Current
- 1.5Mhz Switching Frequency
- Thermal Shutdown Protection
- Current limit and short circuit protections
- Output Adjustable from 0.6V to VIN
- Available in SOT-25, TSOP-25 Pb-Free Package
- Buildin soft start function

APPLICATION

- Cellular and Smart Phones
- Microprocessors and DSP Core Supplies
- Set Top Box
- USB Dongle
- Digital Still and Video Cameras
- Portable Navigation Device

DESCRIPTION

AT7171/AT7171E is a monolithic synchronous buck regulator with a built in internal power MOSFET. It achieves 1.5A continuous output current fix switching frequency with excellent load and line regulation. Current mode operation provides fast transient response and eases of loop stabilization.

Fault condition protection includes cycle-by-cycle current limiting, output short circuit protection and thermal shutdown. In shutdown mode the regulator draws less than 1μ A of supply current. Internal soft-start minimizes the inrush supply current at initial startup. AT7171/AT7171E requires a minimum number of readily available standard external components. It is available in SOT25, TSOP-25 package.

ORDER INFORMATION

PIN CONFIGURATIONS (TOP VIEW)

www.iatiat.com RoHS Compliant and Halogen Free

Rev.1.27 Dec. 2019

PIN DESCRIPTIONS

Pin Symbol	Pin Description
EN	On/Off Control Input. Pull EN above 1.5V to turn the device on.
CND	Ground. This pin is the voltage reference for the regulated output voltage. For this
GND	reason care must be taken in its layout.
SW	Inductor Connection. Connect an inductor between SW and the regulator output.
	Power Supply Input. Drive 2.5V to 5.5V voltage to this pin to power on this chip.
VIN	Connecting a 10uF ceramic bypass capacitor between VIN and GND to eliminate
	noise.
FB	Feedback Input. Connect FB to the center point of the external resistor divider. The
	feedback threshold voltage is 0.6V.

TYPICAL APPLICATION CIRCUITS

Figure 1

VOUT	R2	R1	C1	C2	L1
1.0V	150K	100K	10µF	$10\mu F \times 2 \text{ or } 22\mu F$	2.2µH
1.2V	100K	100K	10µF	$10\mu F \times 2 \text{ or } 22\mu F$	2.2µH
1.5V	100K	150K	10µF	10 μ F $ imes$ 2 or 22 μ F	2.2µH
1.8V	100K	200K	10µF	$10\mu F \times 2 \text{ or } 22\mu F$	2.2µH
2.5V	47K	150K	10µF	10µF	2.2µH
3.3V	68K	300K	10µF	10µF	2.2µH

Table 1 Recommended Component Selection

BLOCK DIAGRAM

Figure 2

ABSOLUTE MAXIMUM RATINGS (Note 1)

Paramete	er	Symbol	Max Value	Unit	
VCC pin voltage		V _{IN}	-0.3 to 7	V	
SW pin voltage		V _{SW}	-0.7 to VIN+0.3	V	
EN, FB pins voltage			-0.3 to VIN+0.3	V	
Junction Temperature		TJ	150	°C	
Storage Temperature Range	Э	T _{STG}	-65 to +150	°C	
Lead Temperature(Soldering	g) 5 Sec.	T _{LEAD}	260	°C	
Power Dissipation,	SOT-25		450		
P _D @ T _A =25°C (Note 2)	TSOT-25	PD	450		
Thermal Resistance	SOT-25 (Note 3)	0	220	°C/1M	
Junction to Ambient	TSOT-25	θJA	220	C/ W	
Thermal Resistance	SOT-25	0	106.6	°0/11/	
Junction to Case	TSOT-25	AlC	106.6	C/ VV	
ESD Rating (Human Body N	Nodel) (Note 4)	V _{ESD}	2	kV	

RECOMMENDED OPERATING CONDITIONS (Note 5)

Parameter	Symbol	Operation Conditions	Unit
Supply Voltage, V _{IN}	V _{IN}	2.5 to 5.5	V
Output Voltage, V _{OUT}	V _{OUT}	0.6 to 5.5	V
Operating Junction Temperature Range	TJ	-40 to +125	°C
Operating Ambient Temperature Range	T _A	-40 to +85	°C

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: Thermal Resistance is specified with the component mounted on a low effective thermal conductivity test board in free air at $T_A=25$ °C.

Note 3: Thermal Resistance is specified with approximately 1 square of 1 oz copper.

Note 4: Devices are ESD sensitive. Handling precaution recommended.

Note 5: The device is not guaranteed to function outside its operating conditions.

ELECTRICAL CHARACTERISTICS

VIN = 5V, VEN = 5V, VOUT = 3.3V, TA = 25°C

Function Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Input Voltage Range	Vin		2.5	-	5.5	V
Input UVLO	UVLO	IOUT=0A	1.8	2.2	2.5	V
Input OVLO (Note6)	OVLO	Ιουτ=0Α	-	6.0	-	V
Quiescent Current	Iccq	VFB = 1V	-	250	350	μA
Shutdown Current	ISD	VEN = 0V	-	0.1	1	μA
FB Pin Voltage	Vfb		0.588	0.6	0.612	V
FB Pin Current (Note7)	IFB		-	-	±50	nA
Load Regulation		0A < IOUT<1.5A	-	0.6	-	%
Line Regulation		2.5V <vin<5.5v< td=""><td>-</td><td>0.3</td><td>-</td><td>%/V</td></vin<5.5v<>	-	0.3	-	%/V
EN Pin Voltage High	VENH		1.5	-	-	V
EN Pin Voltage Low	VENL		-	-	0.4	V
EN Pin Leakage Current		VEN = 3V	-	0.1	1	μA
Switching Frequency	Fosc		1.1	1.5	1.9	MHz
Current Limit	CL		-	2.2	-	А
Switching Maximum Duty	Dmax		-	-	100	%
Minimum Duty	Dmin		0	-	-	%
P-Switch RDS(ON)	RDS(ON)-P		-	170	-	mΩ
N-Switch RDS(ON) (Note7)	RDS(ON)-N		-	130	-	mΩ
Low Side Discharger			-	60	-	Ω
Thermal Shutdown	TSD		-	155	-	°C
Thermal Shutdown Protection hysteresis	Тѕн		-	30	-	°C

Note6: Over Voltage Lock out.

Note7: Guaranteed by design.

TYPICAL OPERATINGCHARACTERITICS

Line regulation_lout=0.5A

Immense Advance Tech.

lout VS Temperature

Temperature vs Vout_Vin=5V , Load=18k Ω

The AT7171/AT7171E uses a user adjustable frequency, current mode, synchronous step-down architecture with internal power switch. During normal operation, the internal power switch is turned on each cycle when the oscillator sets the SR latch, and turned off when the comparator resets the SR latch. The peak inductor current at which comparator resets the SR latch is controlled by the output of error amplifier EA.

Setting the Output Voltage

Application circuit item shows the basic application circuit with adjustable output version. The external resistor sets the output voltage according to the following equation:

Vout=Vfb × (1+R1/R2)

 $V_{FB} = 0.6V$, R2 suggest $10k \sim 300k\Omega$

Table 1 Resistor select for output voltage setting

VOUT	R2	R1
1.0V	150K	100K
1.2V	100K	100K
1.5V	100K	150K
1.8V	100K	200K
2.5V	47K	150K
3.3V	68K	300K

Dropout Operation

As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the high-side switch to remain on for more than one cycle until it reaches 100% duty cycle. The output voltage is dropped from the input supply for the voltage which across the high-side switch. Rev.1.27 Dec. 2019

Immense Advance Tech.

Over Temperature Protection

In most applications the AT7171/AT7171E does not dissipate much heat due to high efficiency .But, in applications where the AT7171/AT7171E is running at high ambient temperature with low supply voltage and high duty cycles, such as in dropout, the heat dissipated may exceed the maximum junction temperature of the part. If the junction temperature reaches approximately 155°C, the internal high-side power switch will be turned off and the SW node will become high impedance.

Over Current Protection

The cycle-by-cycle current limit of T7171/AT7171E limits the peak inductor current to protect embedded switch from damage. Hence the maximum output current (the average of inductor current) is also limited. In case the load increases, the inductor current is also increase. Whenever the current limit level is reached, the output voltage cannot be regulated and starting to drop.

Soft-Start

The AT7171/AT7171E employs internal soft-start circuitry to reduce supply inrush current during startup conditions. When the device exits under-voltage lockout or shut-down mode, the soft-start circuitry will slowly ramp up the output voltage.

Short-circuit Protection

Short-circuit protection will activate once the feedback voltage falls below, and the operating frequency will be reducing normal switching frequency to reduce power delivered from input to output.

PACKAGE OUTLINE DIMENSIONS SOT-25

Symphol	Dimensions in Millimeters			Dimensions in Inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
A	1.05	-	1.35	0.041	-	0.053
A1	0.05	-	0.15	0.002	-	0.006
A2	1.00	1.10	1.20	0.039	0.043	0.047
b	0.30	-	0.50	0.012	-	0.020
С	0.08	-	0.22	0.003	-	0.009
D	2.80	2.90	3.00	0.110	0.114	0.118
E1	1.50	1.60	1.70	0.059	0.063	0.067
E	2.60	2.80	3.00	0.102	0.110	0.118
L	0.30	-	0.60	0.012	-	0.024
L1	0.50	0.60	0.70	0.020	0.024	0.028
e1	1.80	1.90	2.00	0.071	0.075	0.079
e	0.85	0.95	1.05	0.033	0.037	0.041
θ	0°	4°	8°	0°	4°	8°
θ1	5°	10°	15°	5°	10°	15°
θ2	5°	10°	15°	5°	10°	15°

www.iatiat.com RoHS Compliant and Halogen Free

Immense Advance Tech.

PACKAGE OUTLINE DIMENSIONS TSOT-25

Note :

Information provided by IAT is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an IAT product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: IAT does not authorize any IAT product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (II) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. Typical numbers are at 25°C and represent the most likely norm.

Rev.1.27 Dec. 2019

www.iatiat.com RoHS Compliant and Halogen Free