

February 2013

BSS84 P-Channel Enhancement Mode Field-Effect Transistor

Features

- -0.13 A, -50 V, R_{DS(ON)} = 10 Ω at V_{GS} = -5 V
- Voltage-Controlled P-Channel Small-Signal Switch
- High-Density Cell Design for Low R_{DS(ON)}
- **High Saturation Current**

Description

P-channel enhancement-mode field-effect This transistor is produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process minimizes on-state resistance and to provide rugged and reliable performance and fast switching. The BSS84 can be used, with a minimum of effort, in most applications requiring up to 0.13 A DC and can deliver current up to 0.52 A. This product is particularly suited to low-voltage applications requiring а low-current high-side switch.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at T_A = 25°C unless otherwise noted.

Symbol			Parameter	Ratings	Unit
V _{DSS}	Drain-Source Voltage		-50	V	
V _{GSS}	Gate-Source Voltage			±20	V
I _D	Drain Current ⁽¹⁾	Continuous	-0.13	A	
	Diam Curie	lent I	Pulsed	-0.52	A
P _D	Maximum Power Dissipation ⁽¹⁾			0.36	W
	Derate Above 25°C			2.9	mW / °C
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C
	Maximum Lead Temperature for Soldering			300	J°
	Purposes, 1/16" from Case for 10 Seconds		300	U	

Thermal Characteristics

$R_{\theta J A}$	Thermal Resistance, Junction-to-Ambient ⁽¹⁾	350	°C/W		
Noto					

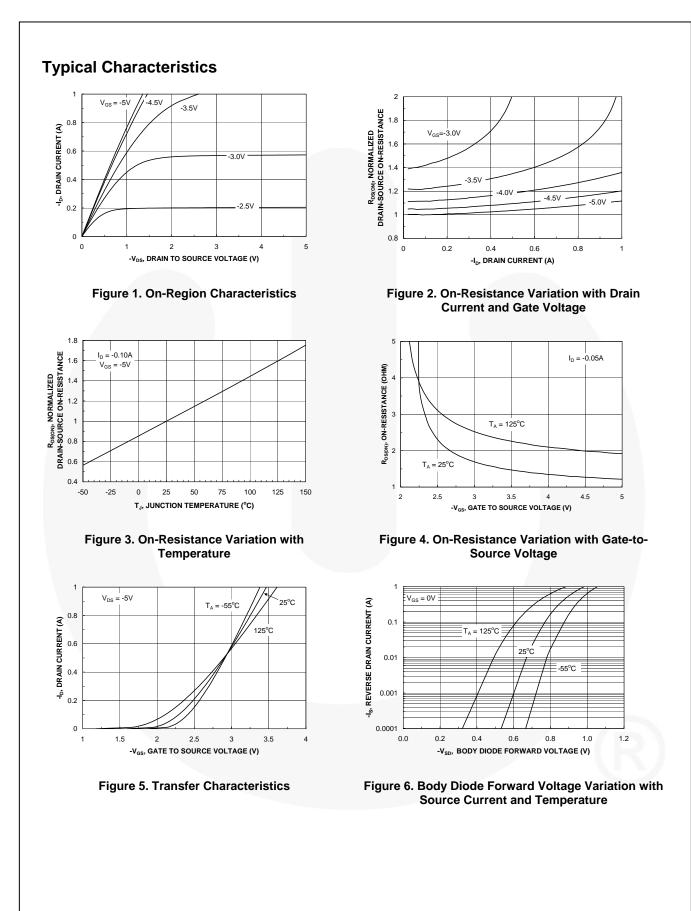
1. R_{0.1A} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JA} is guaranteed by design, while R_{0JA} is determined by the user's board design.

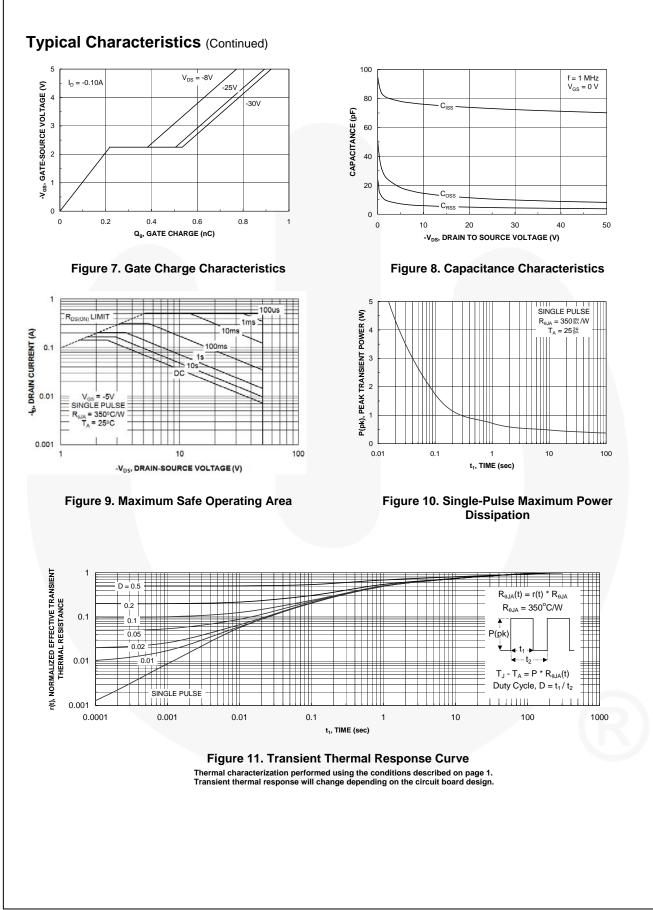
a) 350°C/W when mounted on a minimum pad

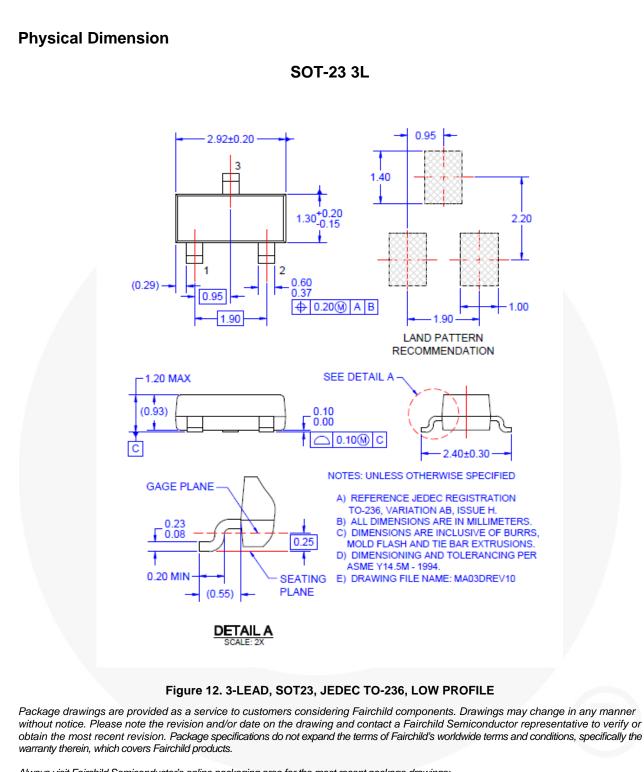
Scale 1: 1 on letter-size paper.

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
SP	BSS84	7"	8mm	3000


Electrical Characteristics⁽²⁾


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Chara	acteristics					1
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-50			V
ΔBV_{DSS}	Breakdown Voltage Temperature	$I_{\rm D} = -250 \ \mu {\rm A},$				
ΔT_{J}	Coefficient	Referenced to 25°C		-48		mV / °C
0	Zero Gate Voltage Drain Current	$V_{DS} = -50 \text{ V}, V_{GS} = 0 \text{ V}$			-15	μA
I _{DSS}		$V_{DS} = -50 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$			60	
		$T_J = 125^{\circ}C$			-60	μA
I _{GSS}	Gate–Body Leakage.	$V_{GS} = \pm 20 \text{ V}, \ V_{DS} = 0 \text{ V}$			±10	nA
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-50			V
On Chara	acteristics ⁽²⁾					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -1 \text{ mA}$	-0.8	-1.7	-2	V
V _{GS(TH)}	Gate Threshold Voltage	$I_D = -1 \text{ mA},$				mV / °C
TJ	Temperature Coefficient	Referenced to 25°C		3		
		$V_{GS} = -5 \text{ V}, I_{D} = -0.10 \text{ A}$		1.2	10.0	Ω
R _{DS(on)}	Static Drain–Source	$V_{GS} = -5 V, I_D = -0.10 A,$				
20(01)	On–Resistance	$T_{\rm J} = 125^{\circ}{\rm C}$		1.9	17.0	Ω
D(on)	On-State Drain Current	$V_{GS} = -5 V, V_{DS} = -10 V$	-0.6			А
g FS	Forward Transconductance	$V_{DS} = -25 \text{ V}, I_D = -0.10 \text{ A}$	0.05	0.60		S
Dynamic	Characteristics					
CISS	Input Capacitance	$V_{\rm DS} = -25 \rm V,$		73		pF
Coss	Output Capacitance	$V_{GS} = 0 V,$		10		pF
C _{RSS}	Reverse Transfer Capacitance	f = 1.0 MHz		5		pF
R _G	Gate Resistance	$V_{GS} = -15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		9		Ω
Switchin	g Characteristics ⁽²⁾					
t _{d(on)}	Turn–On Delay			2.5	5.0	ns
tr	Turn–On Rise Time	$V_{DD} = -30 V, I_D = -0.27 A,$		6.3	13.0	ns
t _{d(off)}	Turn-Off Delay	$V_{GS} = -10 \text{ V}, \text{ R}_{GEN} = 6$		10	20	ns
t _f	Turn–Off Fall Time			4.8	9.6	ns
Qg	Total Gate Charge			0.9	1.3	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = -25 V, I_D = -0.10 A,$		0.2		nC
Q_{gd}	Gate–Drain Charge	$V_{GS} = -5 V$		0.3		nC
Drain-So	urce Diode Characteristics and	l Maximum Ratings				
Is	Maximum Continuous Drain-Source Diode Forward Current				-0.13	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -0.26 A^{(2)}$		-0.8	-1.2	V
t _{RR}	Diode Reverse-Recovery Time	I _F = -0.1 A,		10		ns
Q _{RR}	Diode Reverse-Recovery Charge $d_{iF} / d_t = 100 \text{ A} / \mu \text{s}^{(2)}$			3	/	nC


BSS84 — P-Channel Enhancement Mode Field-Effect Transistor

Note:

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: <u>http://www.fairchildsemi.com/packaging/tr/SOT23-3L_tr.pdf</u>.