

DATA SHEET

ARRAY CHIP RESISTORS

YC/TC

5%, 1%

sizes

YC:102/104/122/124/162/164/248/324/158T/358L/358T

TC: 122/124/164

RoHS compliant

YAGEO Phícomp

YC/TC

SERIES

102 to 358

SCOPE

This specification describes YC (convex, flat) and TC (concave) series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- More efficient in pick & place application
- · Low assembly costs
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb-glass contained in electrodes
- Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERSRED)

(I) SIZE

YC:102/104/122/124/162/164/248/324/158T/358L/358T

TC: 122/124/164

(2) ARRAYS OR NETWORKS

Array YC102/104/122/124/162/164/248/324: -Network YC158T/YC358L/YC358T: NA

(3) TOLERANCE

(4) PACKAGING TYPE

R = Paper taping reel K = Embossed plastic tape reel

(5) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(6) TAPING REEL

07 = 7 inch dia. Reel 13 = 13 inch dia. Reel

(7) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

(8) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)
Letter T is the only default code for YCI02.

ORDERING EXAMPLE

The ordering code of a YC122 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

YCI58T network, value $100,000\Omega$ with 5% tolerance, supplied in 7-inch tape reel is: YCI58TJR-07100KL

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

Resistance rule o number Resistance code rule	
OR	0R = Jumper
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	IOR = IO Ω 97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 KΩ)	IK = 1,000 Ω 9K76 = 9760 Ω
XM (Ι ΜΩ)	IM = 1,000,000 Ω

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and 12NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. TC122 series is supplied and ordered by global part number only.

12NC CODE

235			XXXXX L		
(1)		(.	2) (3) (4)		
TYPE/	-	TOL.	RESISTANCE	PAPER / PE TAPE O	N REEL (units) (2)
2×0402	IN ⁽¹⁾	(%)	RANGE	10,000	50,000
ARV321	2350	±5%	l to I MΩ	013 11xxx	013 12xxx
ARV322	2350	±1%	10 to 1 $M\Omega$	013 2xxxx	013 3xxxx
Jumper	2350	-	0 Ω	013 91001	

- (1) The resistors have a 12-digit ordering code starting with 2350.
- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" is optional symbol (Note).

ORDERING EXAMPLE

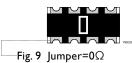
The ordering code of a ARV321 resistor, value 1,000 Ω with ±5% tolerance, supplied in tape of 10,000 units per reel is: 235001311102(L) or YC122-JR-071KL.

Last digit of I2NC Resistance decade ⁽³⁾	Last digit
0.01 to 0.0976 Ω	0
0.I to 0.976 Ω	7
I to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
I to 9.76 KΩ	2
10 to 97.6 KΩ	3
100 to 976 KΩ	4
I to 9.76 MΩ	5
10 to 97.6 MΩ	6

Example:	0.02 Ω	=	0200 or 200
	0.3 Ω	=	3007 or 307
	ΙΩ	=	1008 or 108
	33 KΩ	=	3303 or 333
	10 MΩ	=	1006 or 106

NOTE

- I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)



<u>MARKING</u> YCI02 No marking Fig. I YC122 No marking Fig. 2 YCI04 No marking Fig. 3 YC124/164/324 I-Digit marking Fig. 4 Jumper= 0Ω E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 4-1 Value=240KΩ YC248 П I-Digit marking Fig. 5 Jumper= 0Ω E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 5-I Value=240KΩ YC158T/358L/358T E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 6 Value=24KΩ Fig. 6-1 Value=240K Ω TC122 No marking Fig. 7 TCI24

Fig. 8

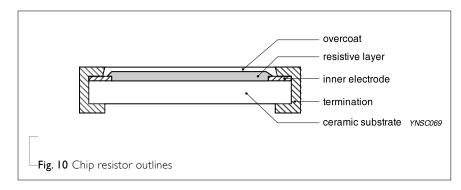
No marking

TC164

I-Digit marking

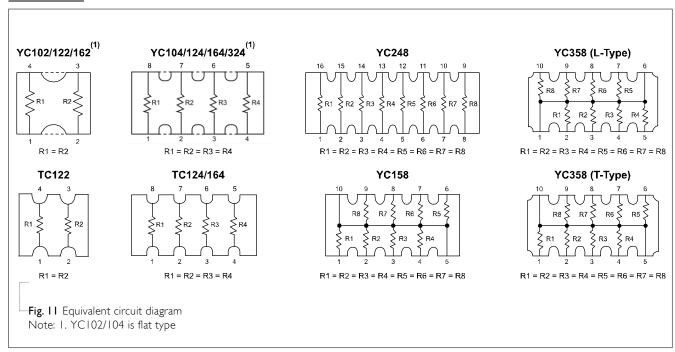
Fig. 9-1 Value=240K Ω

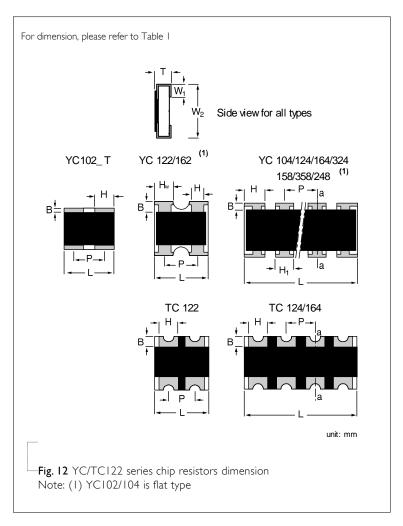
E-24 series: 3 digits


First two digits for significant figure and 3rd digit for number of zeros

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.


OUTLINES

SCHEMATIC

DIMENSIONS

Т	ā	Ы	le	١

$H/H_{I}/H_{W}$	В	Р	L	Т	WI	W2
H: 0.25 ± 0.10	0.15 ±0.10	0.50 ±0.05	0.80 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10
H: 0.20 ± 0.10	0.15 ± 0.05	0.40 ±0.10	1.40 ±0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ±0.10
H: 0.21+0.10 / -0.05 H _w : 0.35 ±0.10	0.20 ± 0.10	0.67 ± 0.05	1.00 ±0.10	0.30 ± 0.10	0.25 ± 0.10	1.00 ±0.10
H: 0.45 ± 0.05 H ₁ : 0.30 ± 0.05	0.20 ± 0.15	0.50 ± 0.05	2.00 ±0.10	0.45 ± 0.10	0.30 ±0.15	1.00 ±0.10
H: 0.30 ±0.10 H _w : 0.65 ±0.15	0.30 ± 0.10	0.80 ± 0.05	1.60 ± 0.10	0.40 ± 0.10	0.30 ± 0.10	1.60 ±0.10
H: 0.65 ± 0.05	0.30 +0.15	0.80 +0.05	3 20 +0 15	0.60 +0.10	030 +0 15	1.60 ± 0.15
H _I : 0.50 ± 0.15	0.30 ±0.13	0.00 ±0.03	3.20 ± 0.13	0.00 ±0.10	0.50 ±0.15	1,00 ±0,13
H: 0.45 ± 0.05	0.30 +0.15	0.50.+0.05	400 +020	0.45 +0.10	0.40 +0.15	1.60 ± 0.15
H _I : 0.30 ± 0.05	0.50 ±0.15	0.50 ±0.05	1,00 ±0,20 0,73 ±0,10		0.10 ±0.15	1.00 ±0.13
H:1.10 ± 0.15	0.50 +0.20	1 27 +0 05	5.08.+0.20	0.60 +0.10	050 +0 15	3.20 ± 0.20
H _I : 0.90 ± 0.15	0.50 ±0.20	1.27 ±0.03	5.00 ± 0.20	0.00 ±0.10	0.50 ±0.15	J.20 1 0.20
H: 0.30 ±0.05	0.25 ± 0.15	0.50 ± 0.05	1.00 ±0.10	0.30 ± 0.10	0.25 ± 0.15	1.00 ±0.10
H: 0.30 ±0.10	0.20 ± 0.10	0.50 ± 0.05	2.00 ±0.10	0.40 ± 0.10	0.25 ± 0.10	1.00 ±0.10
H: 0.50 ±0.15	0.30 ±0.15	0.80 ±0.05	3.20 ± 0.15	0.60 ±0.10	0.30 ±0.15	1.60 ±0.15
H: 0.45±0.05	0.30 +0.15	0.64 +0.05	3 20 +0 20	0.60 +0.10	0.35 +0.15	1.60 ±0.15
H _I : 0.32± 0.05	0.30 ±0.13	0.04 ±0.03	3.20 ± 0.20	0.00 ±0.10	0.55 ±0.15	1.00 ±0.15
H:1.10±0.15	0.50 +0.15	1 27 +0 05	6.40.+0.20	0.60 +0.10	050 +0 15	3,20 ± 0,20
H _I : 0.90 ± 0.15	0.50 ±0.15	1,27 ±0,05	0.10 1 0.20	0.00 ±0.10	0.50 1 0.15	3.20 ± 0.20
	H: 0.25 ± 0.10 H: 0.20 ± 0.10 H: 0.21 + 0.10 / -0.05 H _w : 0.35 ± 0.10 H: 0.45 ± 0.05 H ₁ : 0.30 ± 0.05 H: 0.65 ± 0.15 H: 0.65 ± 0.05 H ₁ : 0.50 ± 0.15 H: 0.45 ± 0.05 H: 0.30 ± 0.05 H: 1.10 ± 0.15 H: 0.30 ± 0.05 H: 0.30 ± 0.15	H: 0.25 ± 0.10 H: 0.20 ± 0.10 O.15 ±0.05 H: 0.21+0.10 / -0.05 H _w : 0.35 ±0.10 H: 0.45 ± 0.05 H ₁ : 0.30 ± 0.05 H: 0.30 ± 0.15 H: 0.65 ±0.15 H: 0.65 ±0.05 H ₁ : 0.50 ±0.15 H: 0.45 ± 0.05 H: 0.45 ± 0.05 H: 0.45 ± 0.05 H: 0.30 ±0.15 H: 0.45 ± 0.05 H: 1.10 ±0.15 H: 0.30 ±0.15 O.30 ±0.15 H: 0.30 ±0.15 H: 0.30 ±0.15 O.30 ±0.15 H: 0.30 ±0.15 H: 0.45±0.05 H ₁ : 0.32±0.05 H: 1.10±0.15	H: 0.25 ± 0.10 H: 0.20 ± 0.10 O.15 ±0.05 O.40 ±0.10 H: 0.21+0.10 / -0.05 H _w : 0.35 ±0.10 H: 0.45 ± 0.05 H _i : 0.30 ± 0.05 H: 0.30 ± 0.05 H: 0.30 ±0.10 H: 0.65 ±0.15 O.30 ±0.05 H: 0.30 ±0.05 H: 0.30 ±0.05 H: 0.30 ±0.15 O.30 ±0.15 O.30 ±0.15 O.30 ±0.15 O.30 ±0.15 O.30 ±0.15 O.30 ±0.05 H: 0.30 ±0.05 O.30 ±0.15 O.30 ±0.15 O.30 ±0.15 O.30 ±0.05 O.30 ±0.15 O.30 ±0.15 O.30 ±0.05	H: 0.25 ± 0.10 H: 0.25 ± 0.10 O.15 ±0.05 O.40 ±0.10 I.40 ±0.10 H: 0.21+0.10 / -0.05 H _w : 0.35 ±0.10 H: 0.45 ± 0.05 O.20 ±0.15 O.50 ±0.05 I.00 ±0.10 H: 0.30 ± 0.05 H _i : 0.30 ± 0.05 O.30 ± 0.10 O.30 ± 0.10 O.30 ± 0.15 O.30 ± 0.05 H _i : 0.50 ± 0.05 H _i : 0.50 ± 0.05 O.30 ± 0.15 O.30 ± 0.15 O.30 ± 0.05 H _i : 0.50 ± 0.15 O.30 ± 0.15 O.30 ± 0.15 O.50 ± 0.05 H _i : 0.50 ± 0.05 H _i : 0.30 ± 0.05 O.50 ± 0.20 O.50 ± 0.20 H _i : 0.30 ± 0.05 H _i : 0.30 ± 0.15 O.50 ± 0.05 O.50 ±	H: 0.25 ± 0.10	H: 0.25 ± 0.10

E24 $\pm 5\%$ $10\Omega \le R \le 1M\Omega$

 $10\Omega \le R \le$

 $10\Omega \le R \le$

 $\text{IOOK}\Omega$

330K**Ω**

 $E24/E96 \pm 1\% \quad I0\Omega \le R \le IM\Omega$

Jumper $< 0.05 \Omega$

E24 ±5%

E24 ±5%

8 12

ELECTRICAL CHARACTERISTICS

Table 2	2								
TYPE	POWER P ₇₀	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE & TOLERANCE	T. C. R.	Jumper crit (unit	
YC102	1/32W	-55°C to +125°C	15V	30V	30V	E24 $\pm 5\%$ $10\Omega \le R \le 1M\Omega$ E24/E96 $\pm 1\%$ $10\Omega \le R \le 1M\Omega$ Jumper $< 0.05\Omega$	1200 /90	Rated current Max. current	
YCI04	1/32W	-55°C to +125°C	12.5V	25V	25V	E24 \pm 5% $ 0\Omega \le R \le M\Omega $ E24/E96 \pm 1% $ 0\Omega \le R \le M\Omega $ Jumper $< 0.05\Omega$	±200 ppm/°C-	Rated current Max. current	
YCI22	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $\Omega \le R \le M\Omega $ E24/E96 \pm 1% $\Omega \le R \le M\Omega $ Jumper $<$ 0.05 Ω		Rated current Max. current	
YCI24	1/16W	-55°C to +155°C	25V	50V	100V	E24 \pm 5% $\Omega \le R \le M\Omega $ E24/E96 \pm 1% $\Omega \le R \le M\Omega $ Jumper $<$ 0.05 Ω	$1\Omega \le R \le 10\Omega^{-1}$ $\pm 250 \text{ ppm/°C}$ $10\Omega \le R \le 1M\Omega$ $\pm 200 \text{ ppm/°C}$	Rated current Max. current	
YC162	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $\Omega \le R \le M\Omega $ E/24/E96 \pm 1% $\Omega \le R \le M\Omega $ Jumper $<$ 0.05 Ω	±200 ррпп С-	Rated current Max. current	
YC164	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $\Omega \le R \le M\Omega $ E24/E96 \pm 1% $\Omega \le R \le M\Omega $ Jumper $<$ 0.05 Ω		Rated current Max. current	
YC248	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $ \Omega\Omega \le R \le M\Omega$ E24/E96 \pm 1% $ \Omega\Omega \le R \le M\Omega$ Jumper $< 0.05\Omega$	-	Rated current Max. current	
YC324	1/8W	-55°C to +155°C	200V	500V	500V	E24 \pm 5% $10\Omega \le R \le IM\Omega$ E24/E96 \pm 1% $10\Omega \le R \le IM\Omega$	-		
TCI22	1/16W	-55°C to +125°C	50V	100V	100V	E24 \pm 5% $10\Omega \le R \le 1M\Omega$ E24/E96 \pm 1% $10\Omega \le R \le 1M\Omega$ Jumper $< 0.05\Omega$	±200 ppm/°C-	Rated current Max. current	1.0
TCI24	1/16W	-55°C to +125°C	50V	100V	100V	E24 \pm 5% $10\Omega \le R \le 1M\Omega$ E24/E96 \pm 1% $10\Omega \le R \le 1M\Omega$ Jumper $< 0.05\Omega$		Rated current Max. current	

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

100V

50V

100V

PACKING STYLE AND PACKAGING QUANTITY

-55°C to +155°C

-55°C to +155°C

-55°C to +155°C

50V

25V

50V

100V

50V

100V

Table 3 Packing style and packaging quantity

PACKING STYLE	PACKING STYLE	YC102/ 104	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158T	YC358L YC358T
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000		5,000	
	13" (254mm)		50,000	40,000		20,000			20,000	
Embossed taping reel (K)	7" (178mm)						4,000	4,000		4,000

NOTE

TC164

YC158T

YC358L

YC358T

1/16W

1/16W

1/16W

1. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

Rated current 1.0

2.0

Max. current

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

YC102/104/122/162, TC122/124 Range:

-55°C to +125°C (Fig.13)

YC124/164/248/324/158T/358L/358T, TC164 Range:

-55°C to +155°C(Fig.14)

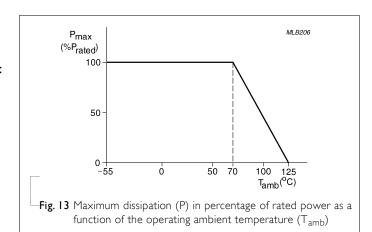
POWER RATING

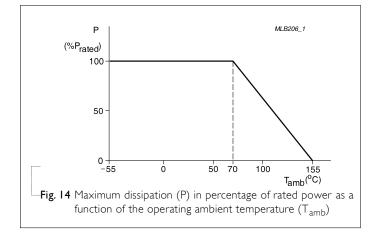
Each type rated power at 70°C YC102/104 = 1/32 W YC122/124/162/164/248/158T/358L/358T = 1/16 W YC324 = 1/8 W

TC122/124/164 = 1/16 W

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$


or max. working voltage whichever is less


Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

L-STD-202G-method I08A C 60115-1 4.25.1 C 5202-7.10 L-STD-202G-method I08A C 60115-1 4.25.3	1.5 hours on, 0.5 hour off, still air required	$\pm (2\% + 0.05~\Omega)$ <100 m Ω for Jumper
C 5202-7.10 L-STD-202G-method 108A		<100 m Ω for Jumper
L-STD-202G-method I08A	LOOP because at management against large	
	LOOO bours at movimum apporting	
C 60115-1 4:25 3	1,000 hours at maximum operating	±(1%+0.05 Ω)
C 5202-7.11	temperature depending on specification, unpowered	$<$ 50 m Ω for Jumper
C 3202-7.11	No direct impingement of forced air to the parts	
	Tolerances: 125±3 °C	
L-STD-202G-method 106F	Each temperature / humidity cycle is defined at	±(2%+0.05 Ω)
IEC 60115-1 4.24.2	8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a $\&$ 7b, unpowered	<100 m Ω for Jumper
	Parts mounted on test-boards, without condensation on parts	
	Measurement at 24±2 hours after test conclusion	
L-STD-202G-method 107G	-55/+125 °C	±(1%+0.05 Ω)
	Note: Number of cycles required is 300. Devices mounted	$<$ 50 m Ω for Jumper
	Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
IIL-R-55342D-para 4.7.5	2.5 times RCWV or maximum overload	±(2%+0.05 Ω)
C60115-1 4.13	voltage whichever is less for 5 sec at room	$<$ 50 m Ω for Jumper
	temperature	No visible damage
C60115-1 4.33	Device mounted on PCB test board as	±(1%+0.05 Ω)
	,	$<$ 50 m Ω for Jumper
	•	No visible damage
	_	
	L-STD-202G-method 107G	Tolerances: I25±3 °C Each temperature / humidity cycle is defined at 8 hours (method I06F), 3 cycles / 24 hours for I0d with 25 °C / 65 °C 95% R.H., without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts Measurement at 24±2 hours after test conclusion L-STD-202G-method I07G -55/+125 °C Note: Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air — Air IL-R-55342D-para 4.7.5 2.5 times RCWV or maximum overload voltage whichever is less for 5 sec at room temperature

Chin	Resistor	Surface	Mount

YC/TC SERIES

102 to 358

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	IPC/JEDECJ-STD-002B test B IEC 60068-2-58	Electrical Test not required Magnification 50X SMD conditions: Ist step: method B, aging 4 hours at 155 °C dry heat 2nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage
- Leaching	IPC/JEDECJ-STD-002B test D IEC 60068-2-58	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to Soldering Heat	MIL-STD-202G-method 210F IEC 60068-2-58	Condition B, no pre-heat of samples Leadfree solder, 270 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	\pm (1%+0.05 Ω) <50 m Ω for Jumper No visible damage

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	Jun. 1, 2017	-	- Update ordering information for networks YC158T/YC358L/YC358T
Version 5	Feb. 14, 2017	-	- Update YC158 and 358 part number to YC158T , YC358L and YC358T
Version 4	Dec. 22, 2016	-	- Delete YC102 default code L type
Version 3	Apr. 29, 2016	-	- Update YC series and TC164 dimension
Version 2	Dec. 11, 2015	-	- Update Operating Temperature
Version I	Feb. 04, 2015	-	- Update YC102 to flat type
Version 0	Nov. 14, 2014	-	- First issue of this specification

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

