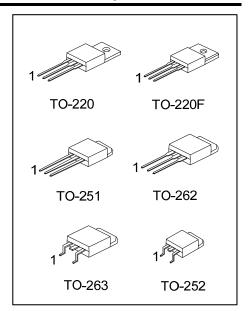
UNISONIC TECHNOLOGIES CO., LTD

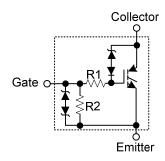
UGV3040

Insulated Gate Bipolar Transistor

300mJ, 400V N-CHANNEL IGNITION IGBT

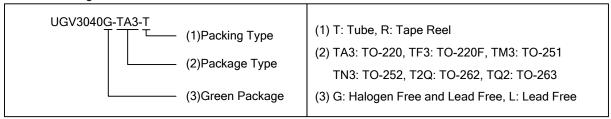

DESCRIPTION

The UTC **UGV3040** is an N-channel ignition Insulated Gate Bipolar Transistor. It uses UTC's advanced technology to provide customers with outstanding SCIS capability.

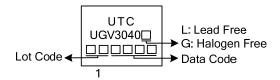

The UTC **UGV3040** is suitable for Coil –On plug applications and Automotive Ignition Coil driver circuits, etc.

■ FEATURES

- * Outstanding SCIS capability
- * Logic level gate drive


■ SYMBOL

■ ORDERING INFORMATION


Ordering Number		Package	Pin Assignment			Packing	
Lead Free	Halogen Free	Fackage	1	2	3	Facking	
UGV3040L-TA3-T	UGV3040G-TA3-T	TO-220	G	С	E	Tube	
UGV3040L-TF3-T	UGV3040G-TF3-T	TO-220F	G	С	E	Tube	
UGV3040L-TM3-T	UGV3040G-TM3-T	TO-251	G	С	E	Tube	
UGV3040L-TN3-R	UGV3040G-TN3-R	TO-252	G	С	Е	Tape Reel	
UGV3040L-T2Q-T	UGV3040G-T2Q-T	TO-262	G	С	E	Tube	
UGV3040L-TQ2-T	UGV3040G-TQ2-T	TO-263	G	С	Е	Tube	
UGV3040L-TQ2-R	UGV3040G-TQ2-R	TO-263	G	С	Е	Tape Reel	

Note: Pin Assignment: G: Gate C: Collector E: Emitter

www.unisonic.com.tw 1 of 5

■ MARKING

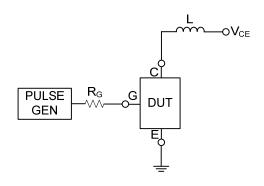
■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

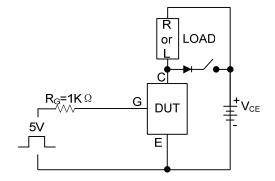
PARAMETER			SYMBOL	RATINGS	UNIT	
Collector to Emitter Breakdown Voltage			BV_CER	450	V	
Emitter to Collector Voltage Reverse Battery Condition			BV _{ECS}	30	V	
At Starting	T _J =25°C, I _{SCIS} =14.2A, L=3.0mHy		_	300	mJ	
At Starting	T _J = 150°C, I _{SCIS} =10.6A, L=3.0mHy		E _{SCIS}	170	mJ	
Continuous Collector Current	T _C =25°C		I _C	21	Α	
Continuous Collector Current	T _C =110°C	_C =110°C		17	Α	
Gate to Emitter Voltage Contin	nuous		V_{GEM}	±10	V	
		TO-220/TO-262 TO-263		125	W	
Power Dissipation Total at T _C =	TO-220F			41.6		
		TO-251/TO-252	Б	125		
Power Dissipation Derating T _C >25°C		TO-220/TO-262 TO-263	P_{D}	1	W/°C	
		TO-220F		0.332		
		TO-251/TO-252		1		
Electrostatic Discharge Voltage at 100pF, 1500Ω			ESD	4	kV	
Junction Temperature			T_J	-40 ~ +175	°C	
Storage Temperature Range			T_{STG}	-40 ~ +175	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

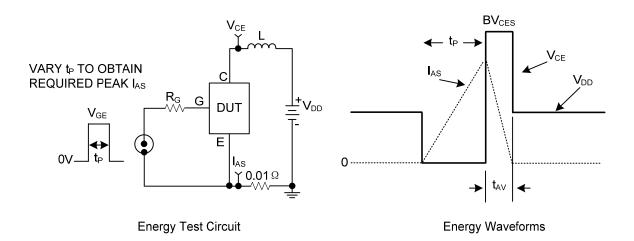
PARAMETER		SYMBOL	RATINGS	UNIT
	TO-220/TO-251 TO-252/TO-262 TO-263	$\theta_{ extsf{JC}}$	1.0	°C/W
	TO-220F		3.0	


■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Off State Characteristics	_			-	ā		
Collector to Emitter Breakdown Voltage	BV _{CER}	I_C =2mA, V_{GE} =0V, R_G =1KΩ, T_J =-40~150°C		350	400	450	٧
Collector to Emitter to Breakdown Voltage	BV _{CES}	I _C =10mA, V _{GE} =0V, R _G =0, T _J =-40~150°C		400	450	500	٧
Emitter to Collector Breakdown Voltage	BV _{ECS}	I _C =-75mA, V _{GE} =0V, T _C =25°C		30			V
Gate to Emitter Breakdown Voltage	BV_GES	I _{GES} =±2mA		±12	±14		V
Collector to Emitter Leakage Current	I _{CER}	V _{CER} =250V,	T _C =25°C			25	μΑ
Collector to Emitter Leakage Current		R_G =1K Ω	T _C =150°C			1	mA
Emitter to Collector Leakage Current	I _{ECS}	V _{EC} =24V	T _C =25°C			1	mΑ
Emitter to Collector Leakage Current			T _C =150°C			40	mΑ
Series Gate Resistance	R ₁				70		Ω
Gate to Emitter Resistance	R ₂			10K		26K	Ω
On State Characteristics							
		$I_C=6A$, $V_{GE}=4V$	T _C =25°C		1.25	1.60	V
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _C =10A, V _{GE} =4.5V	T _C =150°C		1.40	1.80	V
		I _C =15A, V _{GE} =4.5V	T _C =150°C		1.90	2.20	V
Dynamic Characteristics							
Gate Charge	$Q_{G(ON)}$	I _C =10A, V _{CE} =12V, V _{GE} =5V			17		nC
Gate to Emitter Threshold Voltage	$V_{GE(TH)}$	I _C =1.0mA, V _{CE} =V _{GE}		1.3		2.2	V
Gate to Emitter Plateau Voltage	V_{GEP}	I _C =10A, V _{CE} =12V			3.0		V
Switching Characteristics							
Current Turn-On Delay Time-Resistive	t _{d(ON)R}				0.48	4	μs
Current Rise Time-Resistive	t _{rR}	V_{CE} =14V, R_L =1 Ω , V_{GE} =5V, R_G =1K Ω , T_J =25°C			2.1	7	μs
Current Turn-Off Delay Time-Inductive	t _{d(OFF)L}				1.4	15	μs
Current Fall Time Inductive	t _{fL}				2.2	15	μs
Self Clamped Inductive Switching	SCIS	T_J = 25°C, L=3.0mHy, R_G =1K Ω , V_{GE} =5V				300	mJ

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

^{2.} Essentially independent of operating temperature


■ TEST CIRCUIT AND WAVEFORMS

Inductive Switching Test Circuit

ton and toff Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.