

UNC Series

Features

- u Approximately zero leaking current before clamping voltage
- u Less decay at on/off state.
- u High capability to withstand repeated lightning strikes.
- **u** Low electrode capacitance (≤ 1.0 pF) and high isolation ($\geq 100M\Omega$).
- u RoHS compliant.
- u Bilateral symmetrical.
- u Temperature, humidity and lightness insensitive.
- u Working temperature: -40°C ~ +85 °C
- u Storage temperature: -40℃~+125℃
- u Meets MSL level 1, per J-STD-020

Applications

- u Power Supplies
- u Motor sparks eliminating
- u Relay switching spark absorbing
- u Data line pulse guarding
- u Electronic devices requiring UL497A and UL497B compliant
- u Telephone/Fax/Modem
- u High frequency signal transmitters/receivers
- u Satellite antenna
- u Radio amplifiers
- u Alarm systems
- u Cathode ray tubes in Monitors/TVs

Part Numbering

UNC - 2	201 M
---------	-------

(1) (2) (3)

- (1) Series
- (2) V_S Voltage, e.g. 201=20X10¹=200V
- (3) V_S Voltage tolerance: L \pm 15%, M \pm 20%, N \pm 30%

Dimensions

UN Semiconductor Co., Ltd.

@ UN Semiconductor Co., Ltd. 2018 Specifications are subject to change without notice. Please refer to www.unsemi.com.tw for current information.

www.unsemi.com.tw

UNC Series

Electrical Characteristics

Part Number	DC Spark-over Voltage Vs(V)	Minimum Insulation Resistance IR(OHM)/DC	Maximum Capacitance 1KHZ-6Vmax C (pF)	Surge Current Capacity 8/20 µS	Surge Life Test
UNC-141N	140(98~182)	100M / 50V	1.0	3000A	10KV / 150A , >300T
UNC-181N	180(126~234)	100M / 50V	1.0	3000A	10KV / 150A , >300T
UNC-201M	200(160~240)	100M /100V	1.0	3000A	10KV / 150A , >300T
UNC-251M	250(200~300)	100M /100V	1.0	3000A	10KV / 150A , >300T
UNC-301M	300(240~360)	100M /100V	1.0	3000A	10KV / 150A , >300T
UNC-401M	400(320~480)	100M / 250V	1.0	3000A	10KV / 150A , >300T
UNC-471M	470(400~560)	100M / 250V	1.0	3000A	10KV / 150A , >300T
UNC-501M	500(400~600)	100M / 250V	1.0	3000A	10KV / 150A , >300T
UNC-601M	600(480~720)	100M / 250V	1.0	3000A	10KV / 150A , >300T
UNC-102M	1000(800~1200)	100M / 500V	1.0	3000A	10KV / 150A , >300T
UNC-152M	1500(1200~1800)	100M / 500V	1.0	3000A	10KV / 150A , >300T
UNC-242M	2400(1920~2880)	100M / 500V	1.0	3000A	10KV / 150A , >300T
UNC-272M	2700(2250~3240)	100M / 500V	1.0	3000A	10KV / 150A , >300T
UNC-302M	3000(2400~3600)	100M / 500V	1.0	3000A	10KV / 150A , >300T
UNC-362M	3600(2880~4320)	100M / 500V	1.0	3000A	10KV / 150A , >300T

Color Code

Part Number	Color Code1	Color Code2	Color Code3
UNC-141N	Brown	Red	White
UNC-201M	Red	Brown	White
UNC-301M	Orange	Red	White
UNC-401M	Yellow	Brown	White
UNC-501M	Green	Orange	Red
UNC-601M	Blue	Red	Orange
UNC-102M	Black	Black	Red
UNC-152M	Black	Green	Red
UNC-242M	Red	Purple	Red
UNC-272M	Red	Purple	Red
UNC-302M	Orange	Black	Red
UNC-362M	Orange	Blue	Red

UN Semiconductor Co., Ltd.

www.unsemi.com.tw

UNC Series

Test Methods and Results

Items	Test Method	Standard	
DC Spark-over Voltage	Measure starting discharge voltage (Vs) by gradually increasing applied DC voltage. Test current is 0.5mA max. And the DC voltage ascends up within 100V/s(Vs<1000V) or 500V/s(Vs≥1000V).	Rate-of-change, within±30%	
Insulation Resistance	Measure the insulation resistance across the terminal at regular voltage. But the test voltage doesn't over the DC spark-over voltage. Measure the electrostatic capacitance by applying a	insulation resistance & capacitance, conformed to rated spec.	
Static Life	voltage of less than 6V (at 1KHz) between terminals. 10KV with 1500pf condenser is discharged through $2K\Omega$ resistor. 200 times at an interval of 10sec.	△Vs/Vs ≤30% Characteristics of other items must meet the specified value	
Surge Current Capacity	1.2/50 μ s & 8/20 μ s, 3000A, electrically connected with a resistor (1~2 Ω), Do this 1 time, Thereafter, outer appearance shall be visually examined.	No crack and no failures	
Cold Resistance	Measurement after -40 °C /1000 HRS & normal temperature/2 HRS.		
Heat Resistance	Measurement after 125 °C /1000 HRS & normal temperature/2 HRS.		
Humidity Resistance Measurement after humidity 90~95°C (45°C) /1000 Features are conformed to HRS & normal temperature/2 HRS.		Features are conformed to rated spec	
Temperature Cycle	10 times repetition of cycle -40° C /30min \rightarrow normal, temp/2 min \rightarrow 125°C/30min, measurement after normal temp/2 HRS.		
Solder Ability	Apply flux and immerse in molten solder $230\pm5^{\circ}$ C for 3sec up to the point of 1.5mm from body. Check for solder adhesion.	Lead wire is evenly covered by solder	
Solder Heat	Measurement after lead wire is dipped up to the point of 1.5mm from body into 260±5°C solder for 10sec	Conformed to rated spec	
Pull Strength	Apply 0.5kg load for 10sec		
Flexural Strength	Bend lead wire at the point of 2mm from body under 0.25 load and back to its original point. Repeat 1 time.	Lead shall not pull out to snap	

UNC Series

Recommended Soldering Conditions

1) Time shown in the above figures is measured from the point when chip surface reaches temperature.

2) Temperature difference in high temperature part should be within 110 $^\circ\!{\rm C}$.

3) After soldering, do not force cool, allow the parts to cool gradually.

Hand Soldering

Solder iron temperature: $350\pm5^{\circ}$ C Heating time: 3 seconds max.

General attention to soldering

- **u** High soldering temperatures and long soldering times can cause leaching of the termination, decrease in adherence strength, and the change of characteristic may occur.
- u For soldering, please refer to the soldering curves above. However, please keep exposures to temperatures exceeding 200℃ to fewer than 50 seconds.
- **u** Please use a mild flux (containing less than 0.2wt% CI). Also, if the flux is water soluble, be sure to wash thoroughly to remove any residue from the underside of components that could affect resistance.

Cleaning

When using ultrasonic cleaning, the board may resonate if the output power is too high. Since this vibration can cause cracking or a decrease in the adherence of the termination, we recommend that you use the conditions below:

Frequency: 40kHz max.

Output power: 20W/liter

Cleaning time: 5 minutes max.

UNC Series

Packaging

Symbol	Dimension (mm)
Cymbol	Dimension (min)
w	52+2.0/-1.0
Р	5.0±0.5
т	6.0±1.0
Z	1.2 Max
L1-L2	1.0 Max
S	0.8 Max
t	3.2 Max
L	6.7±1.0
D1	Φ0.5±0.05
D	Ф3.1±0.5
R	1.0 Max

ltem	Description
Length	A=255 mm
Width	B=75 mm
Height	C=68 mm
Quantity	1500 PCS
Package	There are upper and bottom board to protect the parts from damage.

UN Semiconductor Co., Ltd.

www.unsemi.com.tw

