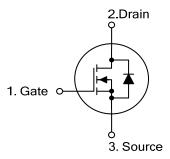


UNISONIC TECHNOLOGIES CO., LTD

14N50

14A, 500V N-CHANNEL **POWER MOSFET**

DESCRIPTION

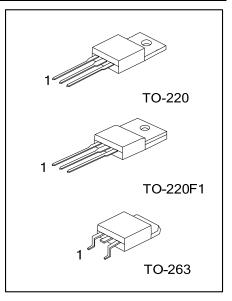

The UTC 14N50 is a N-Channel enhancement mode power MOSFET. The device adopts planar stripe and uses DMOS technology to minimize and provide lower on-state resistance and faster switching speed. It can also withstand high energy pulse under the avalanche and commutation mode conditions.

The UTC 14N50 is ideally suitable for high efficiency switch mode power supply, power factor correction and electronic lamp ballast based on half bridge topology.

FEATURES

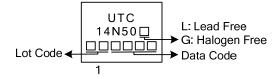
- * $R_{DS(ON)}$ < 0.50 Ω @ V_{GS} = 10V, I_D = 7.0A
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness

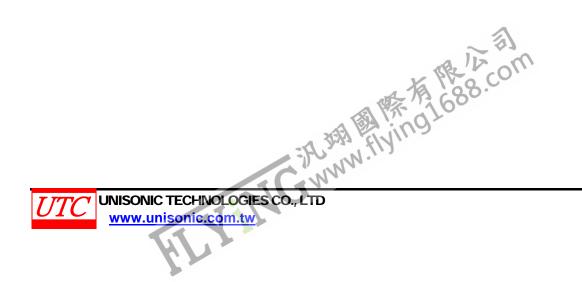
SYMBOL


ORDERING INFORMATION

Ordering Number		Dookago	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
14N50L-TA3-T	14N50G-TA3-T	TO-220	G	D	S	Tube	
14N50L-TF1-T	14N50G-TF1-T	TO-220F1	G	D	S	Tube	
14N50L-TQ2-T	14N50G-TQ2-T	TO-263	G	D	S	Tube	
14N50L-TQ2-R	14N50G-TQ2-R	TO-263	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source


14N50G-TA3-T	K PR CONT
Ţ Ţ Ţ Ţ (1)Packing Type	(1) T: Tube, R:Tape Reel
(2)Package Type	(2) TA3 : TO-220, TF1: TO-220F1, TQ2: TO-263
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free
-1-0	N.
E C W	N ·


Power MOSFET

14N50

MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage	n-Source Voltage		500	V
Gate-Source Voltage		V _{GSS}	±30	V
Continuous Drain Current		I _D 14		А
Pulsed Drain Current (Note 2)		I _{DM}	48	А
Avalanche Current (Note 2)	ent (Note 2)		14	А
Single Pulsed Avalanche Energy	e Pulsed Avalanche Energy (Note 3)		400	mJ
Peak Diode Recovery dv/dt (Note	4)	dv/dt	4.5	V/ns
	TO-220		150	W
Power Dissipation (T _C =25°C)	TO-220F1	PD	50	W
	TO-263		150	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating : Pulse width limited by maximum junction temperature.

3. L = 9.3mH, I_{AS} = 13A, V_{DD} = 50V, R_G = 25 Ω ,Starting T_J = 25°C

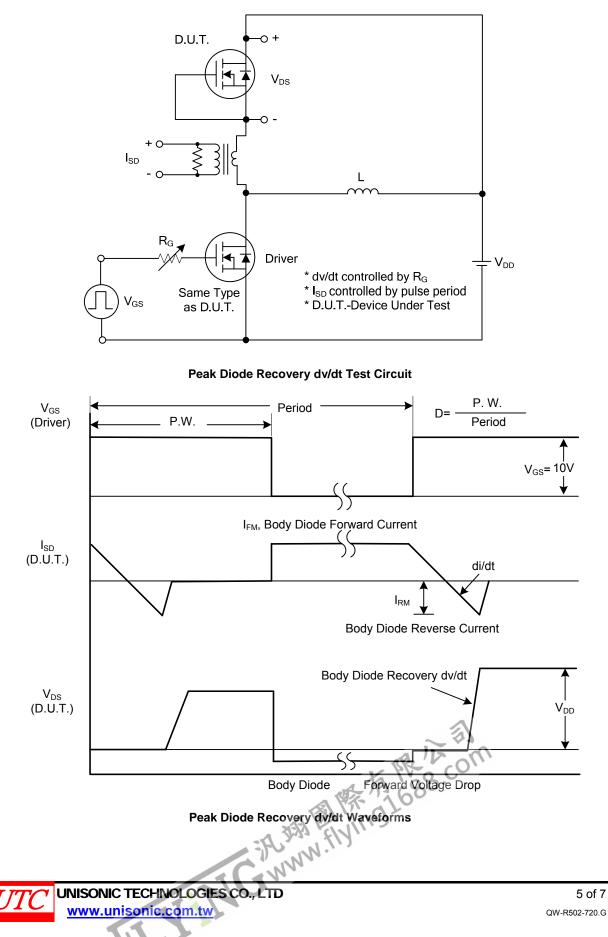
4. I_{SD}≤13.A, di/dt ≤200A/µs, V_{DD}≤ BV_{DSS}, Starting T_J= 25°C

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	ient		62.5	°C/W
	TO-220	θ _{JC}	0.83	°C/W
Junction to Case	TO-220F1		2.5	°C/W
	TO-263		0.83	°C/W

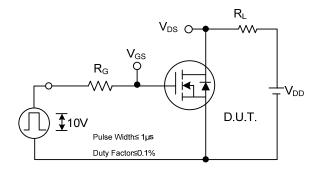
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		•				
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$				V
Drain-Source Leakage Current	I _{DSS}	V _{DS} = 500V, V _{GS} = 0V			10	μA
Gate-Source Leakage Current	I _{GSS}	V _{GS} = 20V, V _{DS} = 0V			100	nA
		V_{GS} = -20V, V_{DS} = 0V			-100	nA
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS} / \triangle T_J$	I _D =250mA,Referenced to 25°C		0.5		V/°C
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D = 7.0A			0.50	Ω
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ISS}	-V _{DS} =25V, V _{GS} =0V, -f=1.0MHz		2000		pF
Output Capacitance	C _{OSS}			238		pF
Reverse Transfer Capacitance	C _{RSS}			55		pF
SWITCHING CHARACTERISTICS						
Total Gate Charge	Q_{G}	-V _{DS} =400V, I _D =12A, -V _{GS} =10 V (Note 1,2)		69	92	nC
Gate-Source Charge	Q _{GS}			12		nC
Gate-Drain Charge	Q_{GD}			31		nC
Turn-On Delay Time	t _{D(ON)}	V _{DD} =250V, I _D =14A, R _G =25Ω (Note 1,2)		24		nS
Turn-On Rise Time	t _R			70		nS
Turn-Off Delay Time	t _{D(OFF)}			54		nS
Turn-Off Fall Time	t _F			50		nS
DRAIN-SOURCE DIODE CHARACTERISTI	CS AND MAXII	MUM RATINGS				
Drain-Source Diode Forward Voltage	V _{SD}	V _{GS} = 0V, I _S = 14A			1.6	V
Maximum Continuous Drain-Source Diode					4.4	~
Forward Current	l _S				14	A
Maximum Pulsed Drain-Source Diode					56	А
Forward Current	I _{SM}				50	~
Reverse Recovery Time	trr	V _{GS} = 0V, I _S = 14A,		470		nS
Reverse Recovery Charge	Q _{RR}	dI _F / dt =100A/µs (Note 1)		3.1		μC

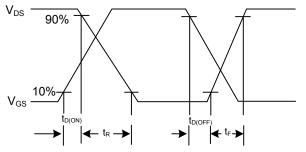
■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)


Notes: 1. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%.

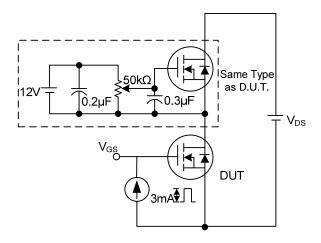
2. Essentially independent of operating ambient temperature.

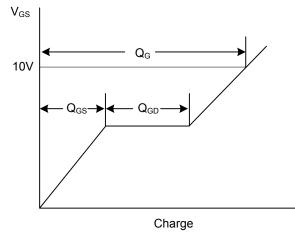
UNISONIC TECHNOLOGIES CO., CTD


14N50

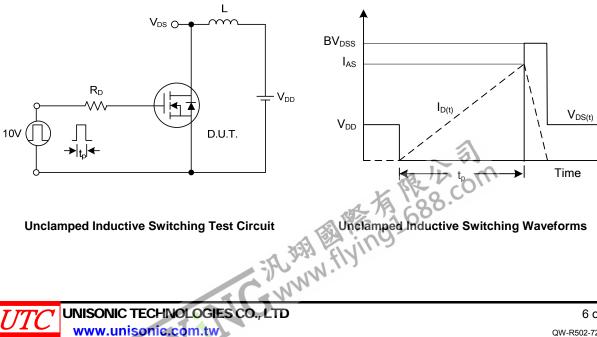

TEST CIRCUITS AND WAVEFORMS

14N50

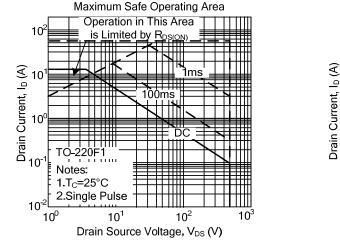

TEST CIRCUITS AND WAVEFORMS (Cont.)

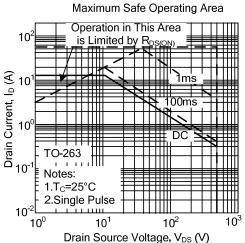


Switching Test Circuit



Gate Charge Test Circuit




Gate Charge Waveform

6 of 7 QW-R502-720.G

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

