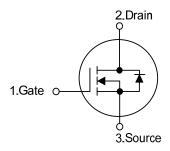
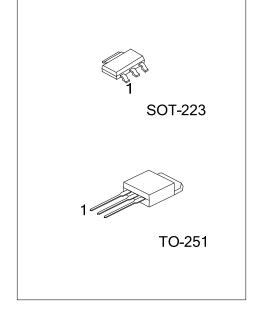
UNISONIC TECHNOLOGIES CO., LTD

1NM65 **Power MOSFET**

1.0A, 650V N-CHANNEL SUPER-JUNCTION MOSFET

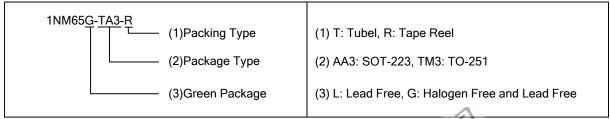

DESCRIPTION


The UTC 1NM65 is a Super Junction MOSFET Structure and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and a high rugged avalanche characteristics. This power MOSFET is usually used at DC-DC, AC-DC converters for power applications.

FEATURES

- * $R_{DS(ON)}$ < 3.5 Ω @ V_{GS} = 10V, I_{D} =0.5A
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
-	1NM65G-AA3-R	SOT-223	G	D	S	Tape Reel	
1NM65L-TM3-T	1NM65G-TM3-T	TO-251	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 6

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drainource Voltage		V_{DSS}	650	V	
Gateource Voltage		V_{GSS}	±30	V	
Drain Current	Continuous	I_D	1.0	Α	
	Pulsed (Note 2)	I _{DM}	4.0	Α	
Avalanche Current (Note 2)		I _{AR}	1.3	Α	
Avalanche Energy	valanche Energy Single Pulsed (Note 3)		8.5	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.6	V/ns	
Power Dissipation	SOT-223	D	10	W	
	TO-251	P_D	28	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

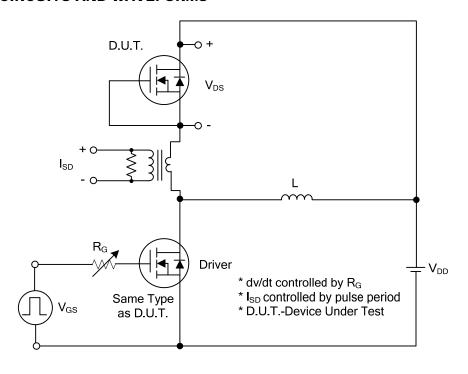
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=10mH, I_{AS} =1.3A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25°C.
- 4. $I_{SD} \le 1.0A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C.

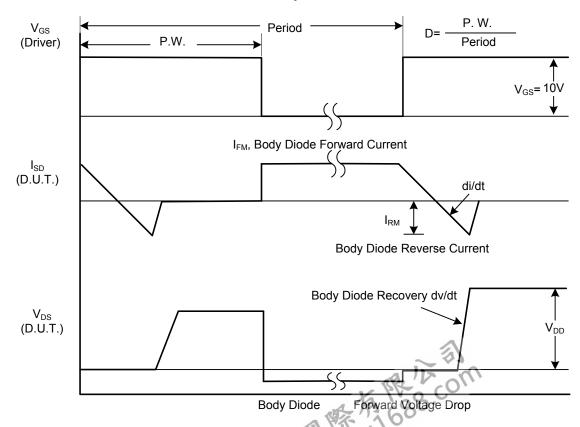
■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOT-223	Q	150	°C/W
	TO-251	θ_{JA}	110	°C/W
Junction to Case	SOT-223	0	12.5	°C/W
	TO-251	θ_{JC}	4.46	°C/W

ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

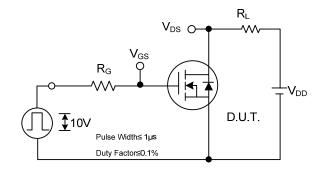

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS			•				
Drainource Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	650			V
Drainource Leakage Current		I _{DSS}	$V_{DS} = 650V, V_{GS} = 0V$			10	μΑ
Gateource Leakage Current	Forward	I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
	Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	V
Static Drainource Ontate Resistance		R _{DS(ON)}	$V_{GS} = 10V, I_D = 0.5A$			3.5	Ω
DYNAMIC CHARACTERISTICS							
nput Capacitance		C_{ISS}			117		pF
Output Capacitance		C_{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		66		pF
Reverse Transfer Capacitance		C_{RSS}			7		pF
SWITCHING CHARACTERISTIC	S		_	-		-	
Total Gate Charge (Note 1)		Q_G	V _{DS} =50V, V _{GS} =10V, I _D =1.3A		18		nC
Gateource Charge		Q_GS	$V_{DS}=50V$, $V_{GS}=10V$, $I_{D}=1.5A$ $-I_{G}=100\mu A$ (Note 1, 2)		2		nC
Gate-Drain Charge		Q_GD	1g=100μΑ (Note 1, 2)		4.5		nC
Turn-On Delay Time (Note 1)		t _{D (ON)}			31		ns
Turn-On Rise Time		t_R	V_{DD} =30V, V_{GS} =10V, I_{D} =0.5A,		31		ns
Turn-Off Delay Time		$t_{D(OFF)}$	$R_G = 25\Omega$ (Note 1, 2)		66		ns
Turn-Off Fall Time		t _F			34		ns
DRAINOURCE DIODE CHARAC	TERISTICS						
Continuous Drainource Current		Is				1.0	Α
Maximum Body-Diode Pulsed Current		I_{SM}				4.0	Α
Drainource Diode Forward Voltage (Note 1)		V_{SD}	I _S =1.0A, V _{GS} =0V			1.4	V
Body Diode Reverse Recovery Time (Note 1)		t _{rr}	I _S =1.0A, V _{GS} =0V,		160		nS
Body Diode Reverse Recovery Charge		Q_{rr}	dI/dt=100A/μs		610		nC

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤2%.



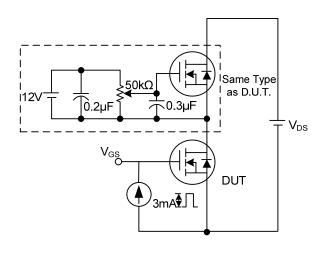
^{2.} Essentially independent of operating temperature.

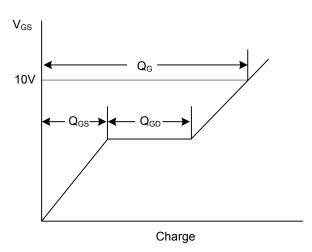
■ TEST CIRCUITS AND WAVEFORMS



Peak Diode Recovery dv/dt Test Circuit

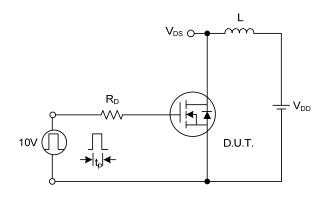
Peak Diode Recovery dv/dt Waveforms

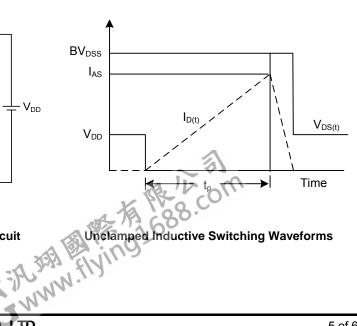

TEST CIRCUITS AND WAVEFORMS (Cont.)



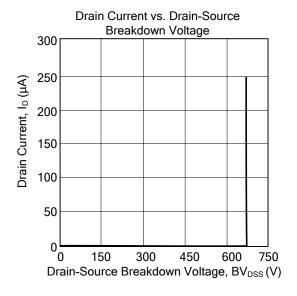
 $V_{\text{DS}} \\$ 90% 10% $V_{\text{GS}} \\$

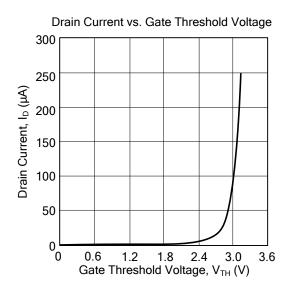
Switching Test Circuit

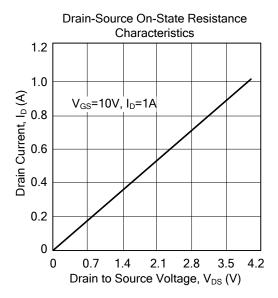

Switching Waveforms

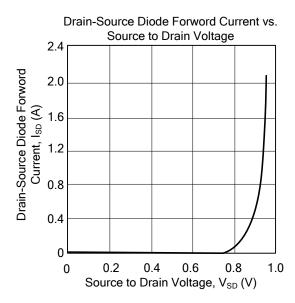


Gate Charge Test Circuit


Gate Charge Waveform






Unclamped Inductive Switching Test Circuit

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.