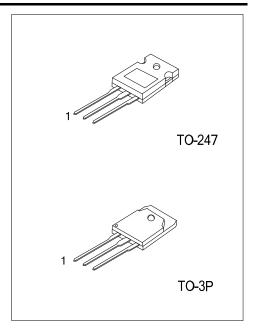
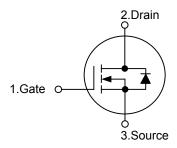
# UTC UNISONIC TECHNOLOGIES CO., LTD

20N65 **Power MOSFET** 

# 20A, 650V N-CHANNEL **POWER MOSFET**


#### **DESCRIPTION**

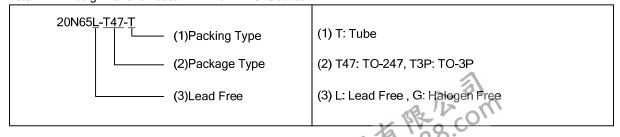
The UTC 20N65 is an N-channel enhancement mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology is specialized in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC 20N65 is universally applied in motor control, UPS, DC choppers and switch-mode and resonant-mode power supplies.



- \*  $R_{DS(ON)} = 0.45\Omega @V_{GS} = 10 V$
- \* High switching speed




#### **SYMBOL**



#### **ORDERING INFORMATION**

| Ordering Number |              | Doolsone | Pin Assignment |   |   | Doolsing |  |
|-----------------|--------------|----------|----------------|---|---|----------|--|
| Lead Free       | Halogen Free | Package  | 1              | 2 | 3 | Packing  |  |
| 20N65L-T47-T    | 20N65G-T47-T | TO-247   | G              | D | S | Tube     |  |
| 20N65L-T3P-T    | 20N65G-T3P-T | TO-3P    | G              | D | S | Tube     |  |

Note: Pin Assignment: G: Gate D: Drain S: Source



www.unisonic.com.tw 1 of 3

## ■ **ABSOLUTE MAXIMUM RATINGS** (T<sub>C</sub> =25°C, unless otherwise specified)

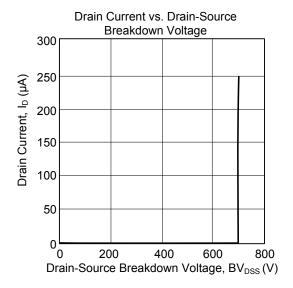
| PARAMETER                            |                       | SYMBOL          | RATINGS  | UNIT |
|--------------------------------------|-----------------------|-----------------|----------|------|
| Drain-Source Voltage                 |                       | $V_{DSS}$       | 650      | V    |
| Gate-Source Voltage                  |                       | $V_{GSS}$       | ±30      | V    |
| Drain Current (T <sub>C</sub> =25°C) | Continuous            | $I_{D}$         | 20       | Α    |
|                                      | Pulsed                | I <sub>DM</sub> | 80       | Α    |
| Avalanche Energy                     | Single Pulsed(Note 2) | E <sub>AS</sub> | 1200     | mJ   |
| Power Dissipation                    | TO-247                | 5               | 367      | W    |
|                                      | TO-3P                 | $P_{D}$         | 416      | W    |
| Junction Temperature                 |                       | T <sub>J</sub>  | +150     | °C   |
| Storage Temperature                  |                       | $T_{STG}$       | -55~+150 | °C   |

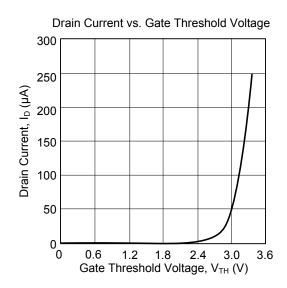
Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

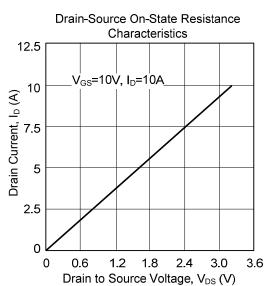
## ■ THERMAL DATA

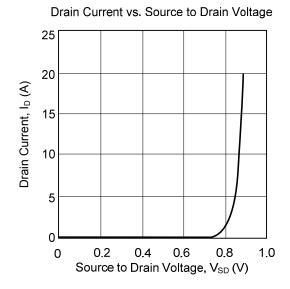
| PARAMETER           |        | SYMBOL          | RATINGS | UNIT |  |
|---------------------|--------|-----------------|---------|------|--|
| Junction to Ambient | TO-247 | 0               | 40      | °C/W |  |
|                     | TO-3P  | θја             | 30      | °C/W |  |
| Junction to Case    | TO-247 | 0               | 0.34    | °C/W |  |
|                     | TO-3P  | θ <sub>JC</sub> | 0.3     | °C/W |  |

## ■ ELECTRICAL CHARACTERISTICS (T<sub>J</sub>=25°C, unless otherwise specified)


| 5.5                                             |         |                     |                                                                                               | MIN |      |      |      |  |
|-------------------------------------------------|---------|---------------------|-----------------------------------------------------------------------------------------------|-----|------|------|------|--|
| PARAMETER                                       |         | SYMBOL              | TEST CONDITIONS                                                                               |     | TYP  | MAX  | UNIT |  |
| OFF CHARACTERISTICS                             |         | T                   | T                                                                                             | ı   |      |      |      |  |
| Drain-Source Breakdown Voltage                  |         | BV <sub>DSS</sub>   | I <sub>D</sub> =250μA, V <sub>GS</sub> =0V                                                    |     |      |      | V    |  |
| Drain-Source Leakage Current                    |         | I <sub>DSS</sub>    | V <sub>DS</sub> =650V, V <sub>GS</sub> =0V                                                    |     |      | 10   | μΑ   |  |
| Gate- Source Leakage Current                    | Forward | <b>」</b> ,  ∤       | $V_{GS}$ =+30V, $V_{DS}$ =0V                                                                  |     |      | +100 | nΑ   |  |
|                                                 | Reverse | $I_{GSS}$           | $V_{GS}$ =-30V, $V_{DS}$ =0V                                                                  |     |      | -100 | nA   |  |
| ON CHARACTERISTICS                              |         |                     |                                                                                               |     |      |      |      |  |
| Gate Threshold Voltage                          |         | $V_{GS(TH)}$        | $V_{DS}=V_{GS}$ , $I_D=250\mu A$                                                              |     |      | 4.0  | V    |  |
| Static Drain-Source On-State Resistance         |         |                     | V <sub>GS</sub> =10V, I <sub>D</sub> =10A, Pulse test,                                        |     | 0.32 | 0.45 | _    |  |
|                                                 |         | R <sub>DS(ON)</sub> | t≤300µs, duty cycle d≤2%                                                                      |     | 0.32 | 0.45 | Ω    |  |
| DYNAMIC PARAMETERS                              |         |                     |                                                                                               |     |      |      |      |  |
| Input Capacitance                               |         | C <sub>ISS</sub>    | V <sub>GS</sub> =0V, V <sub>DS</sub> =25V, f=1MHz                                             |     | 4500 |      | pF   |  |
| Output Capacitance                              |         | Coss                |                                                                                               |     | 300  |      | pF   |  |
| Reverse Transfer Capacitance                    |         | C <sub>RSS</sub>    |                                                                                               |     | 140  |      | рF   |  |
| SWITCHING PARAMETERS                            |         |                     |                                                                                               |     |      |      |      |  |
| Total Gate Charge                               |         | $Q_{G}$             | V <sub>GS</sub> =10V, V <sub>DS</sub> =520V, I <sub>D</sub> =10A<br>(Note 1, 2)               |     |      | 170  | nC   |  |
| Gate to Source Charge                           |         | $Q_{GS}$            |                                                                                               |     |      | 40   | nC   |  |
| Gate to Drain Charge                            |         | $Q_GD$              |                                                                                               |     |      | 85   | nC   |  |
| Turn-ON Delay Time                              |         | t <sub>D(ON)</sub>  |                                                                                               |     |      | 110  | ns   |  |
| Rise Time                                       |         | t <sub>R</sub>      | $V_{GS}$ =10V, $V_{DS}$ =325V, $I_{D}$ =10A, $R_{G}$ =2 $\Omega$ (Note 1, 2)                  |     |      | 130  | ns   |  |
| Turn-OFF Delay Time                             |         | t <sub>D(OFF)</sub> |                                                                                               |     |      | 800  | ns   |  |
| Fall-Time                                       |         | t <sub>F</sub>      |                                                                                               |     |      | 170  | ns   |  |
| SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS |         |                     |                                                                                               |     |      |      |      |  |
| Maximum Body-Diode Continuous<br>Current        |         | Is                  | V <sub>GS</sub> =0V                                                                           |     |      | 00   | ^    |  |
|                                                 |         |                     |                                                                                               |     |      | 20   | Α    |  |
| Maximum Body-Diode Pulsed Current               |         | I <sub>SM</sub>     | Repetitive                                                                                    |     |      | 80   | Α    |  |
| Drain-Source Diode Forward Voltage              |         | V <sub>SD</sub>     | I <sub>F</sub> =I <sub>S</sub> , V <sub>GS</sub> =0V, Pulse test,<br>t≤300µs, duty cycle d≤2% |     |      | 1.5  | ٧    |  |


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%


<sup>2.</sup>  $V_{DD}$ =50V, Starting  $T_J$ =25°C, Peak  $I_{AS}$ =20A, L=6mH


<sup>2.</sup> Essentially independent of operating temperature

#### **■ TYPICAL CHARACTERISTICS**









UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.