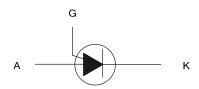
UNISONIC TECHNOLOGIES CO., LTD

2N6027 **SCR**

PROGRAMMABLE UNIJUNCTION TRANSISTOR

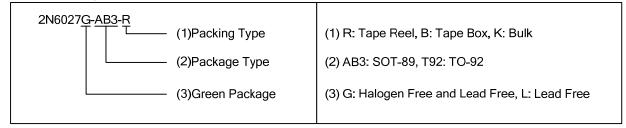
DESCRIPTION

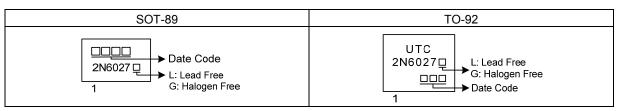

The UTC 2N6027 is a programmable unijunction transistor, it uses UTC's advanced technology to provide customers with low forward voltage, low gate to anode leakage current, low offset voltage and high peak output voltage, etc.

The UTC 2N6027 is suitable for timing, thyristor-trigger, oscillator and pulse circuits, etc.

FEATURES

- * Low Forward Voltage
- * Low Offset Voltage
- * Low Gate to Anode Leakage Current
- * High Peak Output Voltage




ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
2N6027L-AB3-R	2N6027G-AB3-R	SOT-89	Α	G	K	Tape Reel	
2N6027L-T92-B	2N6027G-T92-B	TO-92	Α	G	K	Tape Box	
2N6027L-T92-K	2N6027G-T92-K	TO-92	Α	G	K	Bulk	

Note: Pin Assignment: A: Anode G: Gate K: Cathode

MARKING

SOT-89 TO-92

www.unisonic.com.tw 1 of 4

■ ABSOLUTE MAXIMUM RATINGS (T_J=25°C, unless otherwise specified)

PARAN	METER	SYMBOL	RATINGS	UNIT	
Gate to Cathode Forward Voltage		V_{GKF}	40	V	
Gate to Cathode Reverse Voltage		V_{GKR}	-5.0	V	
Gate to Anode Reverse Voltage		V_{GAR}	40	V	
DC Forward Anode Current	T _J =25°C		150	mA	
	Derate Above 25°C	- I _T	2.67	mA/°C	
DC Gate Current		I_{G}	±50	mA	
Repetitive Peak Forward	Pulse Width=100µs		1.0	Α	
Current (Note 2)	Pulse Width=20 µs	I _{TRM}	2.0	Α	
Non–Repetitive Peak Forward Current 10 µs Pulse Width		I _{TSM}	5.0	Α	
Anode to Cathode Voltage		V_{AK}	± 40	V	
Power Dissipation	SOT-89	D	280	mW	
	TO-92	P _D	300		
Power Dissipation Derate	SOT-89	1/0	4.45	mW/°C	
Above 25°C	TO-92	1/θ _{JA}	4.0		
Operating Junction Temperature Range		T_J	−50 ~ +100	°C	
Storage Temperature Range		T _{STG}	− 55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Duty Cycle ≤ 1%
- 3. Anode positive, R_{GA}=1000 ohms Anode negative, R_{GA}=Open

■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	SOT-89	0	220	°C/W	
Junction to Ambient	TO-92	θ_{JA}	200		
Junction to Case	SOT-89	0	80	°C/W	
Junction to Case	TO-92	θ_{JC}	75		

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise specified)

		1				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Peak Current	l _P	V_S =10V, R_G =1M Ω		1.25	2.0	μΑ
		V_S =10V, R_G =10k Ω		4.0	5.0	μA
Offset Voltage	V_T	V_S =10V, R_G =1M Ω	0.2	0.70	1.6	V
Valley Current	I _V	V_S =10V, R_G =1M Ω		18	50	μΑ
		V_S =10V, R_G =10k Ω		150		μΑ
		V_S =10V, R_G =200 Ω	1.5			mA
Gate to Anode Leakage		V _S =40V, T _A =25°C, Cathode Open		1.0	10	nA
Current	I_{GAO}	V _S =40V, T _A =75°C, Cathode Open)		3.0		nA
Gate to Cathode Leakage	,	V - 40V Arada ta Cathada Chartad		5.0	50	nA
Current	I _{GKS}	V _S = 40V, Anode to Cathode Shorted		5.0		
Forward Voltage (Note)	V_{F}	I _F =50mA Peak		8.0	1.5	V
Peak Output Voltage	Vo	V _G =20V, C _C =0.2μF	6	11		V
Pulse Voltage Rise Time	t _r	V _B =20V, C _C =0.2μF		40	80	ns

Note: Pulse Test: Pulse Width≤300µsec, Duty Cycle ≤ 2%

2N6027 scr

TEST CIRCUITS AND TYPICAL CHARACTERISTICS

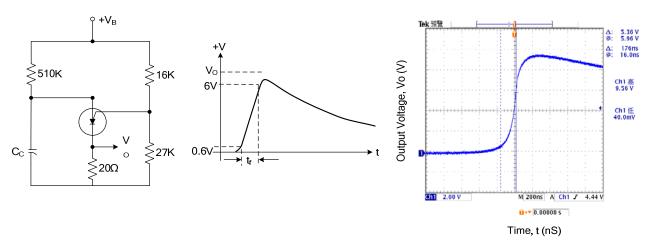
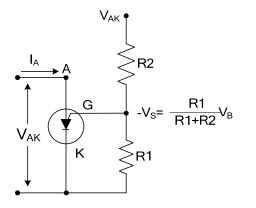
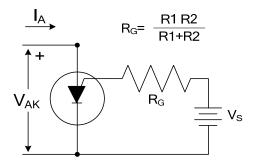
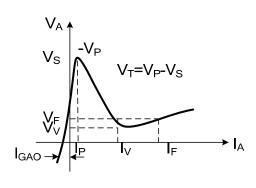




Fig 1. Output Voltage and Rise Time Test Circuit



Programmable Unijunction with "Program" Resistors R1 and R2

Equivalent Test Circuit for Figure 1A used for electrical characteristics testing

Electrical Characteristics

IC-Electrical Characteristics

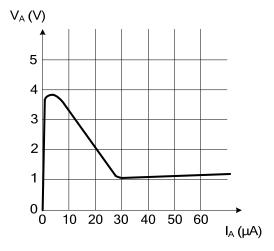


Fig 2. Electrical Characterization

2N6027 scr

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

