

UTC UNISONIC TECHNOLOGIES CO., LTD

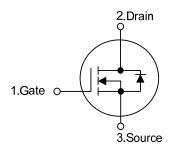
30N06V-Q

Preliminary

Power MOSFET

TO-251

60V, 30A N-CHANNEL **POWER MOSFET**


DESCRIPTION

The UTC 30N06V-Q is a low voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and excellent avalanche characteristics. This power MOSFET is usually used at automotive applications in power supplies, high efficient DC to DC converters and battery operated products.

- * $R_{DS(ON)} < 40 m \Omega @V_{GS} = 10 V, I_D = 15A$
- * Fast switching capability
- * Avalanche energy specified

SYMBOL

ORDERING INFORMATION

Ordering Number		Dealerse	Pin Assignment			Dealizer	
Lead Free	Halogen Free	Package	1	2	3	Packing	
30N06VL-TM3-T	30N06VG-TM3-T	TO-251	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ ABSOLUTE MAXIMUM RATINGS(T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	60	V
Gate to Source Voltage		V _{GSS}	±20	V
Continuous Drain Current	$T_c = 25^{\circ}C$	1	30	А
	T _C = 100°C	l _D	21.3	А
Pulsed Drain Current (Note 2)		I _{DM}	120	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	250	mJ
	Repetitive (Note 2)	E _{AR}	8	mJ
Power Dissipation		PD	46	W
Junction Temperature		ΤJ	+150	°C
Operation Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Repeativity rating: pulse width limited by junction temperature

3. L=0.66mH, I_{AS} =30A, V_{DD} =25V, R_G =20 Ω , Starting T_J =25°C

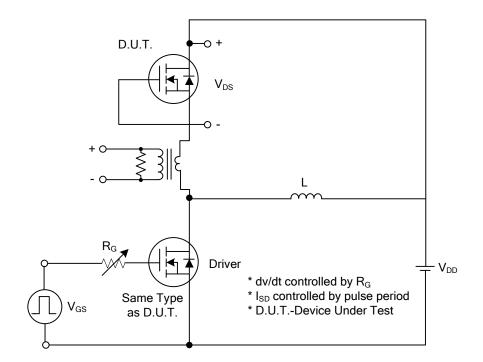
■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT	
Junction to Ambient	θ _{JA}	110	°C/W	
Junction to Case	θ _{JC}	2.85	°C/W	

30N06V-Q

Preliminary

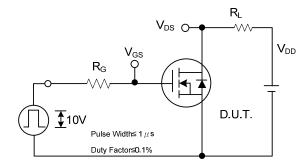
■ ELECTRICAL CHARACTERISTICS (T_c = 25°C, unless otherwise specified)

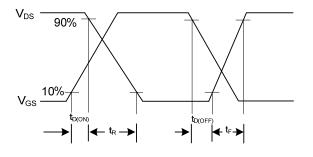

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V			10	μA
Cata Cauraa Laakana Currant	orward	less	V _{GS} = 20V, V _{DS} = 0 V			100	nA
Gate-Source Leakage Current	Reverse		V _{GS} = -20V, V _{DS} = 0 V			-100	nA
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS} / \triangle T_J$	I _D =250μA,		0.06		V/°C
			Referenced to 25°C				
ON CHARACTERISTICS				i	i	ii	
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} = V _{GS} , I _D = 250 μA	1.6		2.4	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} = 10 V, I _D = 15 A			40	mΩ
DYNAMIC CHARACTERISTICS						-	
Input Capacitance	nput Capacitance				800		рF
Output Capacitance		C _{OSS}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1MHz		300		рF
Reverse Transfer Capacitance		C _{RSS}			50		рF
SWITCHING CHARACTERISTICS	6						
Turn-On Delay Time		t _{D(ON)}			30		ns
Turn-On Rise Time		t _R	V _{DD} = 30V, I _D =15 A, V _{GS} =10V		50		ns
Turn-Off Delay Time		t _{D(OFF)}	(Note 1, 2)		280		ns
Turn-Off Fall Time		t _F			120		ns
Total Gate Charge	otal Gate Charge				30		nC
Gate-Source Charge		Q_{GS}	V _{DS} = 60V, V _{GS} = 10 V, I _D = 24A (Note 1, 2)		5		nC
Gate-Drain Charge		Q_{GD}	$I_D = 24A$ (Note 1, 2)		8		nC
SOURCE-DRAIN DIODE RATING	S AND CH	ARACTERIST	ICS				
Drain-Source Diode Forward Volta	ge	V _{SD}	V _{GS} = 0 V, I _S = 30A			1.4	V
Maximum Continuous Drain-Source Diode		I _S				20	٨
Forward Current						30	A
Maximum Pulsed Drain-Source Did	ode					120	А
Forward Current		I _{SM}				120	А
Natao 4 Dulas Test Dulas width							

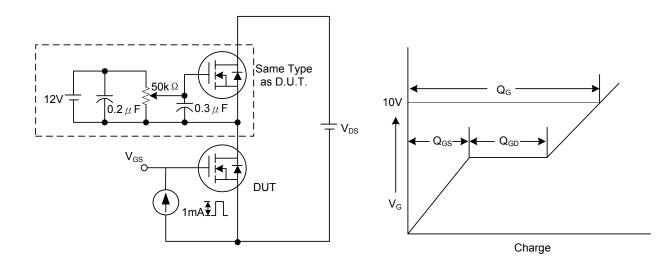
Notes: 1. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%

2. Essentially independent of operating temperature.

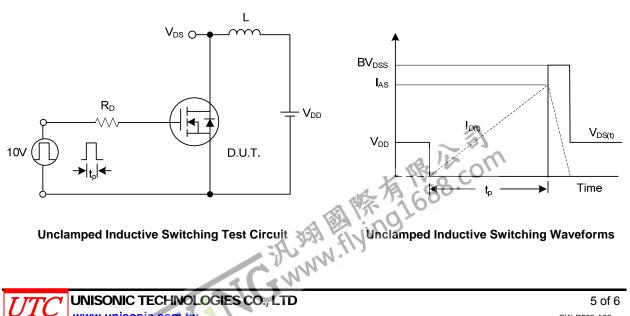
UNISONIC TECHNOLOGIES CO., LTD www.unisonia.com.tw


■ TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit


TEST CIRCUITS AND WAVEFORMS (Cont.)

Switching Test Circuit



Switching Waveforms

Gate Charge Test Circuit

Gate Charge Waveform

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

