

UTC UNISONIC TECHNOLOGIES CO., LTD

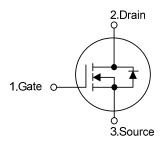
3N60-TA

Power MOSFET

TO-220F

TO-220

3A, 600V N-CHANNEL POWER MOSFET


DESCRIPTION

The UTC 3N60-TA is a high voltage power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche characteristics. This power MOSFET is usually used in high speed switching applications of switching power supplies and adaptors.

FEATURES

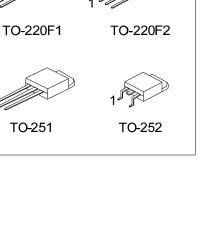
- * $R_{DS(ON)}$ < 3.3 Ω @ V_{GS} =10V, I_D =1.5A
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness

SYMBOL

ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Packing	
Lead Free	Halogen Free	Package	1	2	3	racking	
3N60L-TA3-T	3N60G-TA3-T	TO-220	G	D	S	Tube	
3N60L-TF1-T	3N60G-TF1-T	TO-220F1	G	D	S	Tube	
3N60L-TF2-T	3N60G-TF2-T	TO-220F2	G	D	S	Tube	
3N60L-TF3-T	3N60G-TF3-T	TO-220F	G	D	S	Tube	
3N60L-TM3-T	3N60G-TM3-T	TO-251	G	D	S	Tube	
3N60L-TN3-R	3N60G-TN3-R	TO-252	G	D	S	Tape Reel	
Note: Pin Assignment: C: C	ate D: Drain S: Source		•		•	•	

Pin Assignment: G: Gate Note: D: Drain S: Source


G: Halogen Free

Date Code

Lot Code

www.unisonic.com.tw Copyright © 2018 Unisonic Technologies Co., Ltd

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	600	V
Gate-Source Voltage		V _{GSS}	±30	V
Continuous Drain Current		I _D	3	А
Pulsed Drain Current (Note 2)		I _{DM}	6	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	101	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	3.3	V/ns
Power Dissipation	TO-220		75	W
	TO-220F/TO-220F1 TO-220F2	P _D	34	W
	TO-251/TO-252		45	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

3. L = 10mH, I_{AS} = 4.5A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

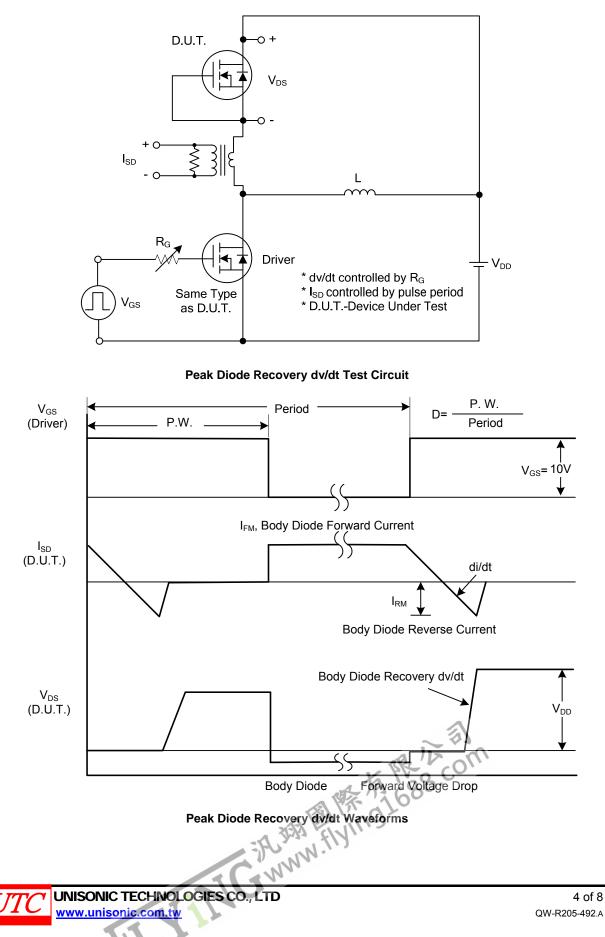
4. $I_{SD} \le 3.0A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient	TO-220/TO-220F TO-220F1/TO-220F2	θ _{JA}	62.5	°C/W
	TO-251/TO-252] [110 (Note)	°C/W
Junction to Case	TO-220		1.67	°C/W
	TO-220F/TO-220F1 TO-220F2	θ_{JC}	3.68	°C/W
	TO-251/TO-252		2.78 (Note)	°C/W

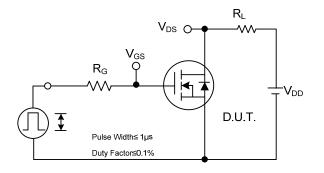
Note: The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$	600			V
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 600V, V_{GS} = 0V$			10	μA
Gate- Source Leakage Current	Forward	— I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
Gale- Source Leakage Current	Reverse		V_{GS} = -30V, V_{DS} = 0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} = 10V, I _D = 1.5A			3.3	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance	Input Capacitance				392		рF
Output Capacitance		C _{OSS}	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		46		pF
Reverse Transfer Capacitance		C _{RSS}			3.4		рF
SWITCHING CHARACTERISTICS	i						
Total Gate Charge (Note 1)		Q_{G}	V _{DS} =100V, V _{GS} =10V, I _D =2A		10		nC
Gate-Source Charge		Q_{GS}	$I_G=1mA$ (Note 1, 2)		3.4		nC
Gate-Drain Charge		Q_{GD}			1.8		nC
Turn-On Delay Time (Note 1)		t _{D(ON)}			33		ns
Turn-On Rise Time		t _R	V _{DS} =30V, V _{GS} =10V, I _D =0.5A,		23		ns
Turn-Off Delay Time		$t_{D(OFF)}$	R _G =25Ω (Note 1, 2)		110		ns
Turn-Off Fall Time		t _F			52		ns
DRAIN-SOURCE DIODE CHARAC	CTERISTICS	AND MAXI	MUM RATINGS				
Maximum Body-Diode Continuous Current		ls				3	Α
Maximum Body-Diode Pulsed Current		I _{SM}				6	А
Drain-Source Diode Forward Voltage (Note 1)		V_{SD}	I _S =3.0A , V _{GS} =0V			1.4	V
Reverse Recovery Time (Note 1)		t _{rr}	I _S =3.0A , V _{GS} =0V		264		ns
Reverse Recovery Charge		Qrr	di/dt=100A/µs		1.6		μC

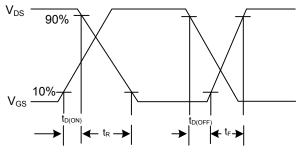

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

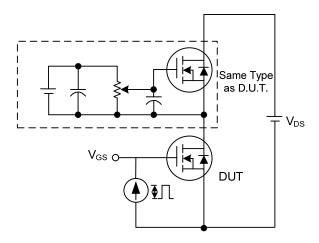
2. Essentially independent of operating temperature.

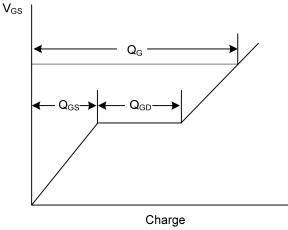


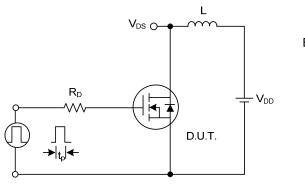
TEST CIRCUITS AND WAVEFORMS



3N60-TA


TEST CIRCUITS AND WAVEFORMS


Switching Test Circuit

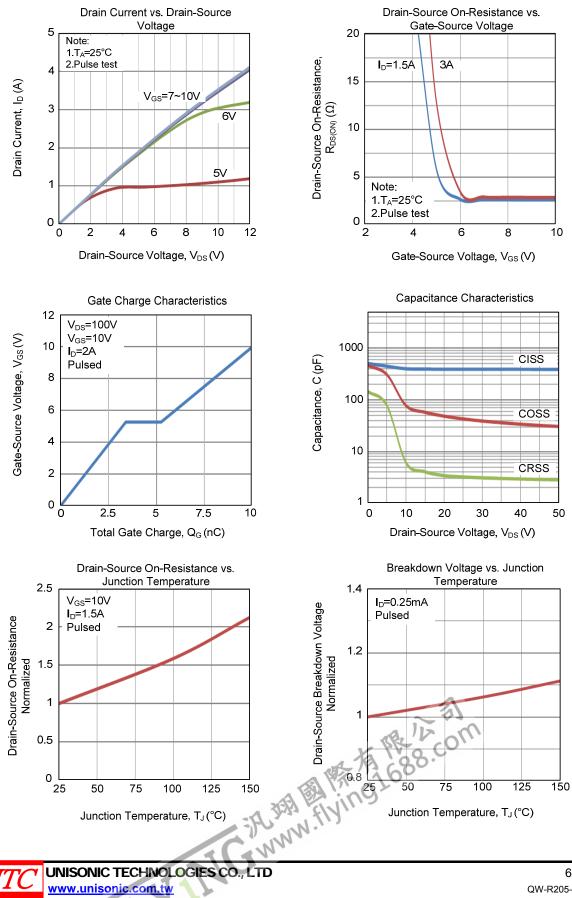

Switching Waveforms

Gate Charge Test Circuit

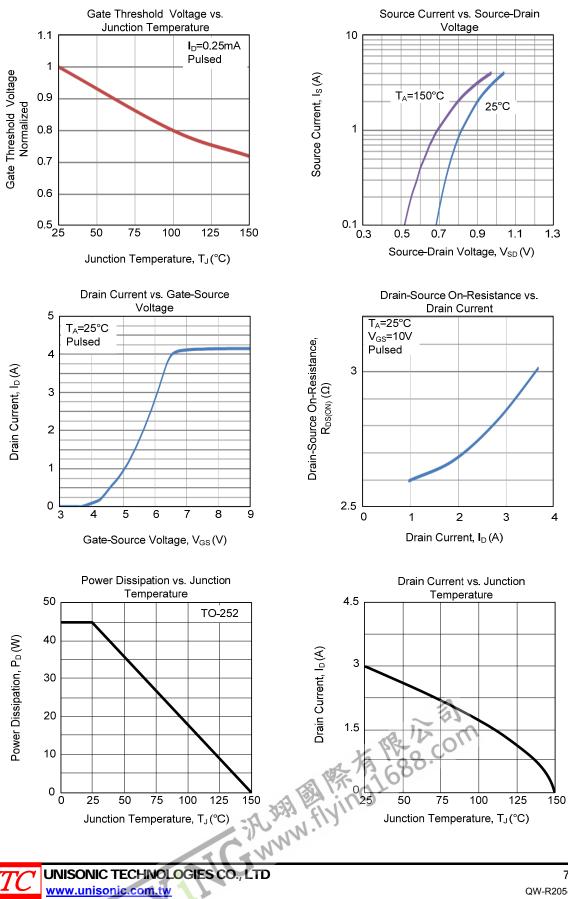


Gate Charge Waveform

 $\mathsf{BV}_{\mathsf{DSS}}$ I_{AS} D(t) V_{DS(t)} V_{DD} cuit Unclamped Inductive Switching Waveforms

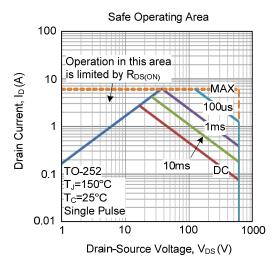


Power MOSFET


TYPICAL CHARACTERISTICS

6 of 8 QW-R205-492.A

3N60-TA


TYPICAL CHARACTERISTICS (Cont.)

7 of 8 QW-R205-492.A

3N60-TA

■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

