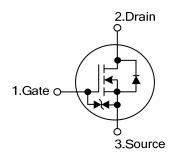
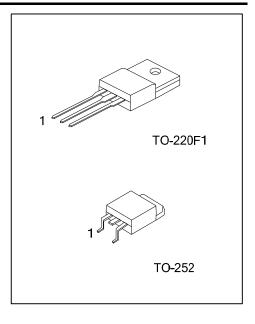
UNISONIC TECHNOLOGIES CO., LTD

3N80Z **Power MOSFET**

3A, 800V N-CHANNEL **POWER MOSFET**

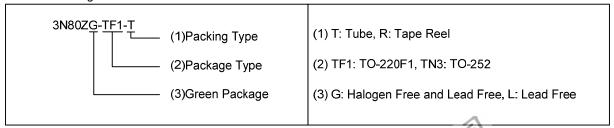

DESCRIPTION


The UTC 3N80Z provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES

- * $R_{DS(ON)}$ < 4.2 Ω @ V_{GS} =10V, I_D =1.5A
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness

SYMBOL



ORDERING INFORMATION

Ordering Number		Dookago	Pin	Assignm	Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
3N80ZL-TF1-T	3N80ZG-TF1-T	TO-220F1	G	D	S	Tube	
3N80ZL-TN3-R	3N80ZG-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 8

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage (V _{GS} =0V)		V_{DSS}	800	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Minimum Gate-Source Breakdown Voltage (I _{GS} =±1mA)		BV _{GSO}	30	V	
Continuous Drain Current		I _D	3.0	Α	
Pulsed Drain Current		I _{DM}	12	Α	
Avalanche Current (Note 2)		I _{AR}	4.0	Α	
Single Pulse Avalanche Energy (Note 3)		E _{AS}	150	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	3.1	V/ns	
Davier Dissipation	TO-220F1	Б	25	W	
Power Dissipation	TO-252	P_{D}	50	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

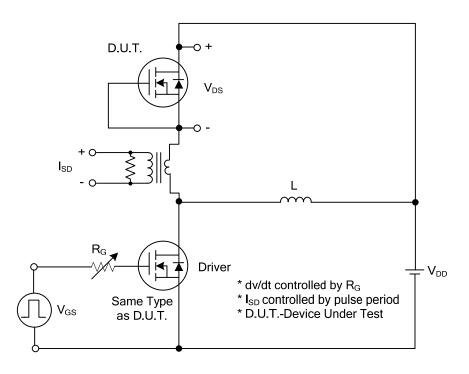
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=35mH, I_{AS} =3.0A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25°C.
- 4. $I_{SD}\leq3.0A$, di/dt $\leq200A/\mu s$, $V_{DD}\leq BV_{DSS}$, Starting T_{J} = 25°C

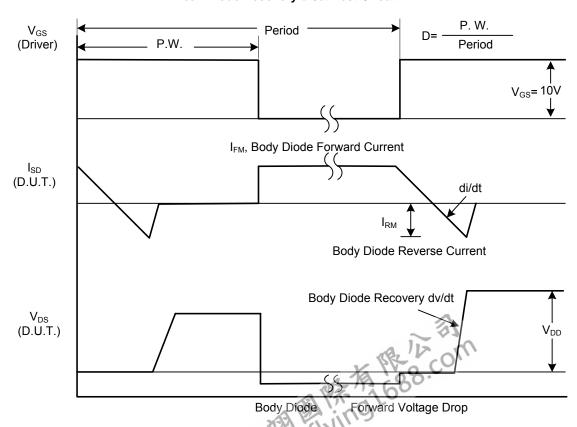
■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient	TO-220F1	0	62.5	°C/W
Junction to Ambient	TO-252	θ_{JA}	110	°C/W
lunction to Coop	TO-220F1	θ _{JC}	5.0	°C/W
Junction to Case	TO-252		2.5	°C/W

ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

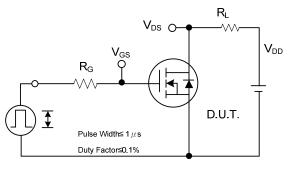

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	800			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V			1	μA		
Gate-Source Leakage Current	I_{GSS}	V_{GS} =±20V, V_{DS} =0V			±10	μA		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$			4.5	V		
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =1.5A			4.2	Ω		
DYNAMIC CHARACTERISTICS								
Input Capacitance	C_{ISS}	V _{GS} =0V, V _{DS} =25V, f=1MHz		625		pF		
Output Capacitance	Coss			63		pF		
Reverse Transfer Capacitance	C_{RSS}			9		pF		
SWITCHING CHARACTERISTICS								
Total Gate Charge	Q_G	V _{DS} =100V, V _{GS} =10V, I _D =3.0A, -I _G =1mA (Note 1, 2)		18.5		nC		
Gate to Source Charge	Q_GS			5.4		nC		
Gate to Drain Charge	Q_GD			5.7		nC		
Turn-ON Delay Time	t _{D(ON)}	V_{DD} =100V, V_{GS} =10V, I_{D} =3.0A, R_{G} =25 Ω (Note 1, 2)		11.2		ns		
Rise Time	t_R			20.2		ns		
Turn-OFF Delay Time	t _{D(OFF)}			64		ns		
Fall-Time	t_{F}			42.2		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current	I_{SD}				3.0	Α		
Maximum Body-Diode Pulsed Current	I _{SDM}				12	Α		
Drain-Source Diode Forward Voltage	V_{SD}	I _S =3.0A ,V _{GS} =0V			1.6	V		
Reverse Recovery Time	t _{rr}	I _S =3.0A, V _{GS} =0V,		380		ns		
Reverse Recovery Charge	Q_{rr}	di _F /dt=100A/μs		3.48		μC		

Notes: 1. Pulse width=300µs, Duty cycle ≤1.5%

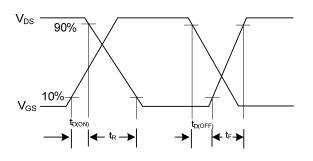


^{2.} $C_{OSS(EQ)}$ is defined as constant equivalent capacitance giving the same charging time as C_{OSS} when V_{DS} increases from 0to 80% V_{DSS} .

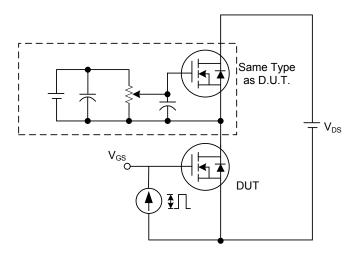
■ TEST CIRCUITS AND WAVEFORMS

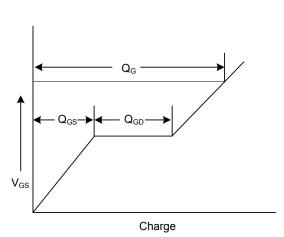


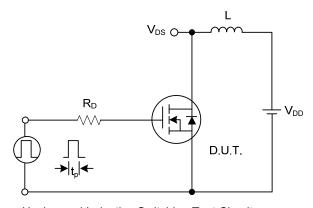
Peak Diode Recovery dv/dt Test Circuit

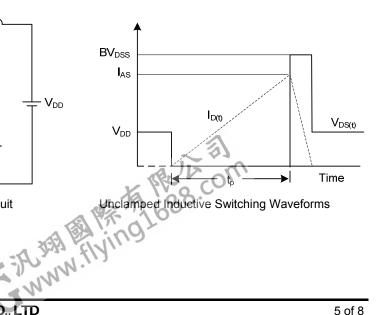


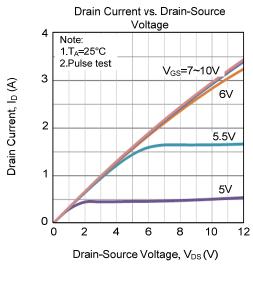
Peak Diode Recovery dv/dt Waveforms

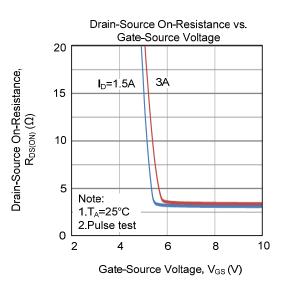

TEST CIRCUITS AND WAVEFORMS (Cont.)

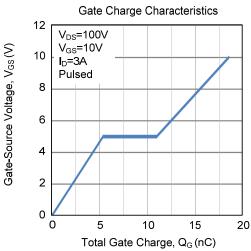

Switching Test Circuit

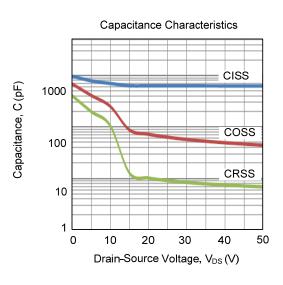

Switching Waveforms

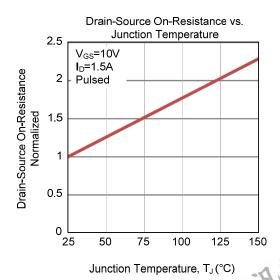

Gate Charge Test Circuit

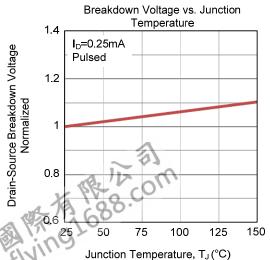

Gate Charge Waveform

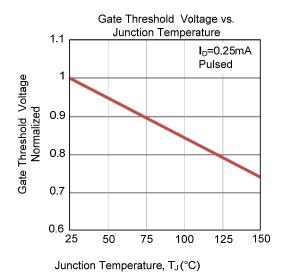


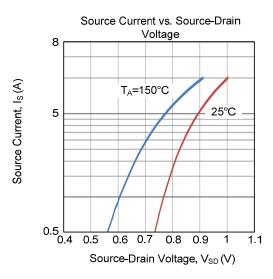

Unclamped Inductive Switching Test Circuit

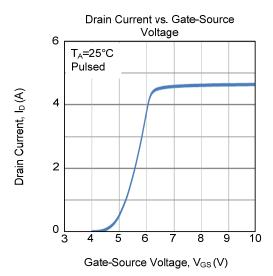


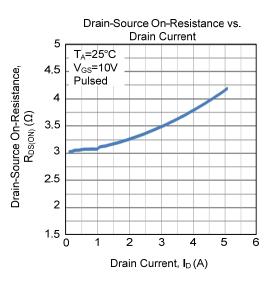

■ TYPICAL CHARACTERISTICS

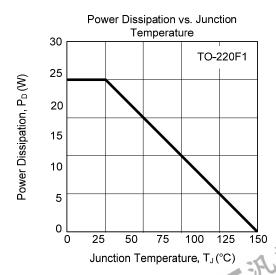


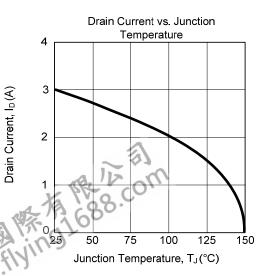


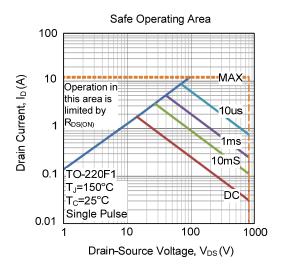







■ TYPICAL CHARACTERISTICS (Cont.)





■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.