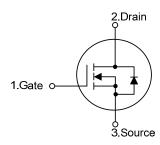
4N40K-MT Power MOSFET

4A, 400V N-CHANNEL POWER MOSFET

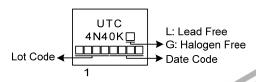
■ DESCRIPTION


The UTC **4N40K-MT** is a N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology specializes in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

The UTC **4N40K-MT** is universally applied in electronic lamp ballast based on half bridge topology and high efficient switched mode power supply.

- * $R_{DS(ON)}$ < 1.4 Ω @ V_{GS} = 10 V, I_D = 2.0 A
- * High switching speed
- * 100% avalanche tested

■ SYMBOL



ORDERING INFORMATION

Ordering Number		Doolsogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
4N40KL-TN3-R	4N40KG-TN3-R	TO-252	G	D	S	Tape Reel	
Note: Pin Assignment: G: G	e				_		

4N40KG-TN3-R
(1)Packing Type
(1) R: Tape Reel
(2) TN3: TO-252
(3) G: Halogen Free and Lead Free, L: Lead Free

■ MARKING

1 TO-252

<u>www.unisonic.com.tw</u> 1 of 5

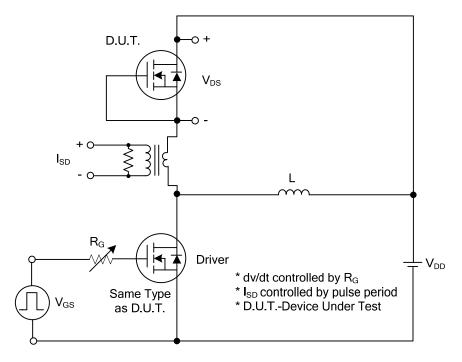
ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	400	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Drain Current	Continuous (T _C =25°C)	I _D	4	Α	
Drain Gurient	Pulsed (Note 2)	I _{DM}	8	Α	
Avalanche Energy Single Pulsed (Note 3)		E _{AS}	116	mJ	
Peak Diode Recovery dy	v/dt (Note 4)	dv/dt	4.5	V/ns	
Power Dissipation		P_D	50	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

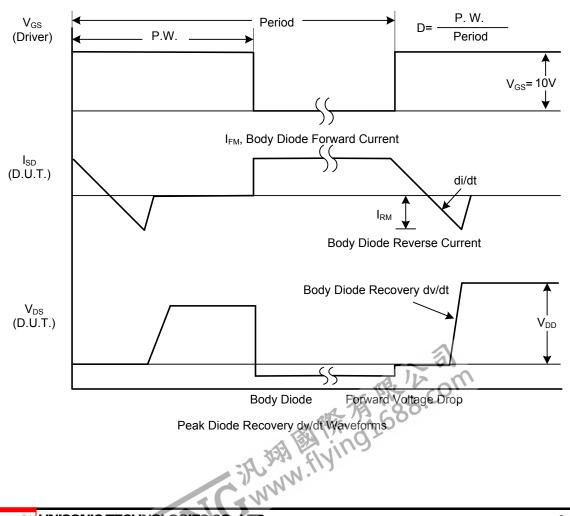
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=18mH, I_{AS} =3.6A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 4.0A$, di/dt $\le 100A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C

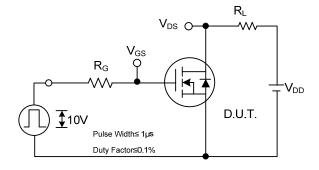
THERMAL DATA

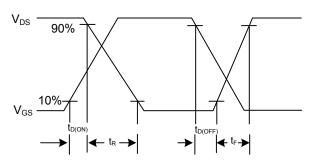

PARAMETER	SYMBOL	SYMBOL RATINGS	
Junction to Ambient	θ_{JA}	110	°C/W
Junction to Case	θјс	2.5	°C/W

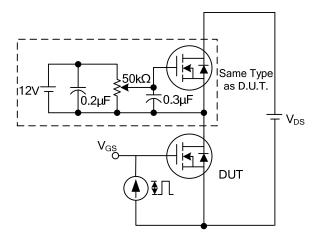
ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

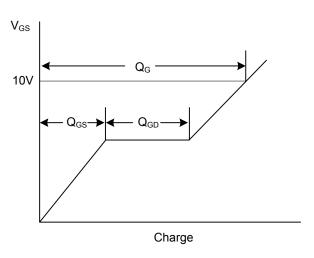

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	400			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =400V, V _{GS} =0V			10	μA			
Forward	I _{GSS}	V _{GS} =+30V, V _{DS} =0V			+100	nA			
Gate- Source Leakage Current Reverse		V _{GS} =-30V, V _{DS} =0V			-100	nΑ			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$			4.0	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =10V, I_D =2.0A		1.2	1.4	Ω			
DYNAMIC PARAMETERS									
Input Capacitance	C_{ISS}			400		pF			
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		56		pF			
Reverse Transfer Capacitance	C_{RSS}			4.5		pF			
SWITCHING PARAMETERS									
Total Gate Charge	Q_G	1/ 100// 1/ 10// 1 10/		11.5		nC			
Gate to Source Charge	Q_GS	V _{DS} =100V, V _{GS} =10V, I _D =4.0A, I _G =1mA (Note 1, 2)		4.6		nC			
Gate to Drain Charge	Q_GD	IG-IIIIA (NOte 1, 2)		2		nC			
Turn-ON Delay Time	$t_{D(ON)}$			6		ns			
Rise Time	t_R	V_{DS} =100V, V_{GS} =10V, I_{D} =4.0A,		15		ns			
Turn-OFF Delay Time	t _{D(OFF)}	R _G =25Ω (Note1,2)		23		ns			
Fall-Time	t_{F}			22		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current	I_{SD}	~ ***			4	Α			
Maximum Body-Diode Pulsed Current	I _{SM}	WE COM			8	Α			
Drain-Source Diode Forward Voltage	V_{SD}	I _S =4.0A, V _{GS} =0V			1.5	٧			
Reverse Recovery Time (Note 1)	t _{rr}	1 = 4 00 V - 00 QL (dt=4000 /::=		190		nS			
Reverse Recovery Charge	Qrr	I_S =4.0A, V_{GS} =0V, dI_F/dt =100A/ μ s		1.28		μC			

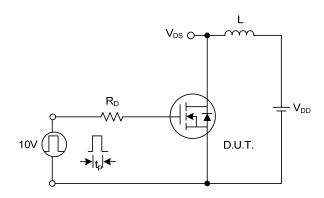
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%. 2. Essentially independent of operating temperature.

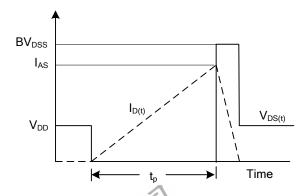

TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit


TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

