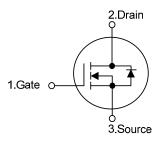
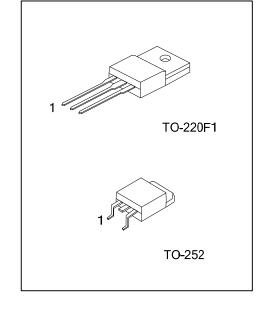
UNISONIC TECHNOLOGIES CO., LTD

4N70-C Preliminary Power MOSFET

4A, 700V N-CHANNEL POWER MOSFET

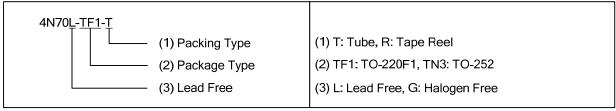

■ DESCRIPTION


The UTC **4N70-C** is a high voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche. This high speed switching power MOSFET is usually used in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

■ FEATURES

- * $R_{DS(ON)}$ < 2.8 Ω @ V_{GS} = 10 V
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness

■ SYMBOL



■ ORDERING INFORMATION

Ordering Number		Dookaga	Pin .	Assignn	Doolsing		
Lead Free	Halogen Free	Package	1	2	3	Packing	
4N70L-TF1-T	4N70G-TF1-T	TO-220F1	G	D	S	Tube	
4N70L-TN3-R	4N70G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING INFORMATION

PACKAGE	MARKING			
TO-220F1 TO-252	UTC 4N70 ☐ C: Lead Free → G: Halogen Free → Data Code			
L WWW.				

<u>www.unisonic.com.tw</u> 1 of 6

■ ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	700	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Avalanche Current (Note 2)		I_{AR}	4	Α	
Drain Comment	Continuous	Ι _D	4	Α	
Drain Current	Pulsed (Note 2)	I_{DM}	16	Α	
Avalenche Energy	Single Pulsed (Note 3)	Pulsed (Note 3) E _{AS} 150 mJ ive (Note 2) E _{AR} 10.6 mJ	mJ		
Avalanche Energy	Repetitive (Note 2)	E_{AR}	10.6	mJ	
Peak Diode Recovery dv/dt (Note 4)	dv/dt	4.5	V/ns	
Dawer Dissipation	TO-220F1 36		36	14/	
Power Dissipation	TO-252	P_D	49	W	
Junction Temperature		۲٦	+150	°C	
Operating Temperature		T_OPR	-55 ~ + 150	°C	
Storage Temperature		T_{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

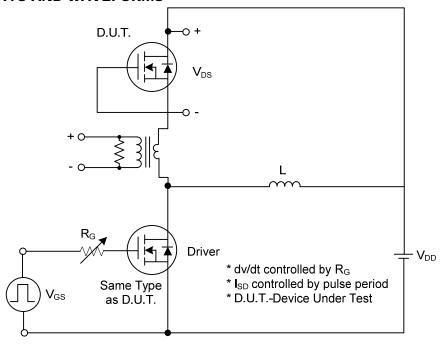
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 18.75mH, I_{AS} = 4A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 4A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

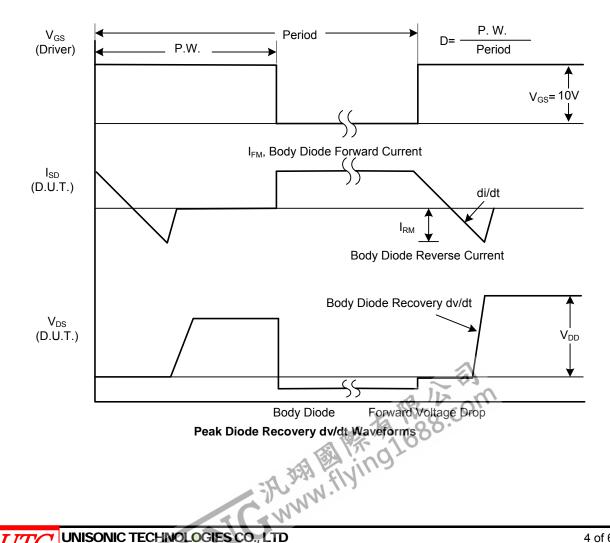
■ THERMAL DATA

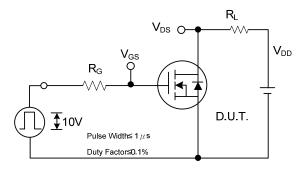
PARAMETER		SYMBOL	RATINGS	UNIT	
lumation to Ambient	TO-220F1	0	62.5	°C/W	
Junction to Ambient	TO-252	θ_{JA}	110		
Lucation to Occa-	TO-220F1	0	3.47	°0/14/	
Junction to Case	TO-252	θις	2.55	°C/W	

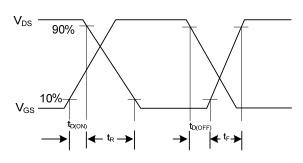
ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

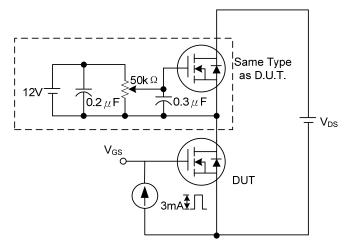

PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	700			V		
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 700 V, V _{GS} = 0 V			10	μΑ		
Cata Cauraa I aaka sa Currant	Forward	I _{GSS}	V _{GS} = 30 V, V _{DS} = 0 V			100	A		
Gate-Source Leakage Current	Reverse		$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA		
Breakdown Voltage Temperature	Coefficient	$\triangle BV_{DSS} \! / \triangle T_J$	I _D = 250μA, Referenced to 25°C	25°C 0.6			V/°C		
ON CHARACTERISTICS									
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$			4.0	V		
Static Drain-Source On-State Res	istance	R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_{D} = 2A$		2.6	2.8	Ω		
DYNAMIC CHARACTERISTICS									
Input Capacitance		C_{ISS}	V _{DS} = 25 V, V _{GS} = 0 V,		800	950	pF		
Output Capacitance		Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1MHz$		320	400	pF		
Reverse Transfer Capacitance		C_{RSS}	1 - 1101112		28	40	pF		
SWITCHING CHARACTERISTIC	S								
Total Gate Charge		Q_G	V _{DS} = 50V, I _D = 1.3A, I _G = 100μA V _{GS} = 10 V (Note 1, 2)		16.5		nC		
Gate-Source Charge		Q_GS			4.0		nC		
Gate-Drain Charge		Q_GD	V _{GS} - 10 V (Note 1, 2)		3.7		nC		
Turn-On Delay Time		$t_{D(ON)}$	$V_{DD} = 30V, I_D = 0.5A, R_G = 25\Omega$ (Note 1, 2)		34	40	ns		
Turn-On Rise Time		t_R			30	60	ns		
Turn-Off Delay Time		$t_{D(OFF)}$			40	100	ns		
Turn-Off Fall Time		t_{F}			39	70	ns		
SOURCE- DRAIN DIODE RATING	GS AND CI	HARACTERIS	TICS						
Drain-Source Diode Forward Voltage		V_{SD}	$V_{GS} = 0 V$, $I_S = 4A$			1.4	V		
Maximum Continuous Drain-Source	ce Diode	I.				4	Α		
Forward Current		I _S				4	^		
Maximum Pulsed Drain-Source Diode		I _{SM}				16	Α		
Forward Current		ISM				10	^		
Reverse Recovery Time		t _{rr}	$V_{GS} = 0 \text{ V}, I_{S} = 4A,$		250		ns		
Reverse Recovery Charge		Q_{RR}	dl/dt = 100 A/µs (Note 1)		1.5		μC		

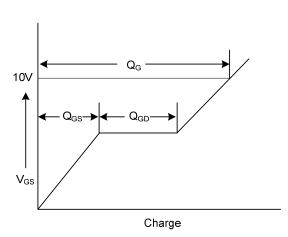
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

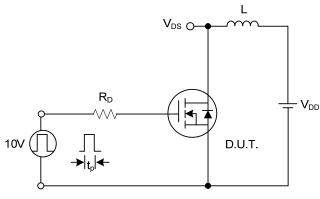

2. Essentially independent of operating temperature

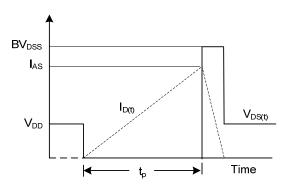

TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit


TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

