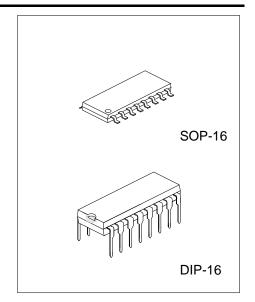


UNISONIC TECHNOLOGIES CO., LTD

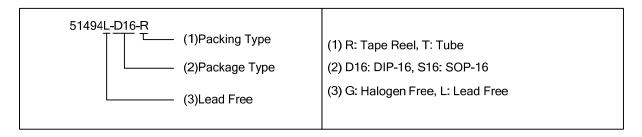
51494


LINEAR INTEGRATED CIRCUIT

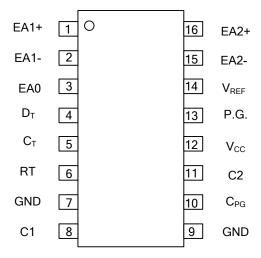
DESCRIPTION

The UTC 51494 is a monolithic bipolar integrate circuit that provides same 494 function and built in power good signal circuit for easy using 51494 can be easily implemented by just adding a capacitor.

FEATURES

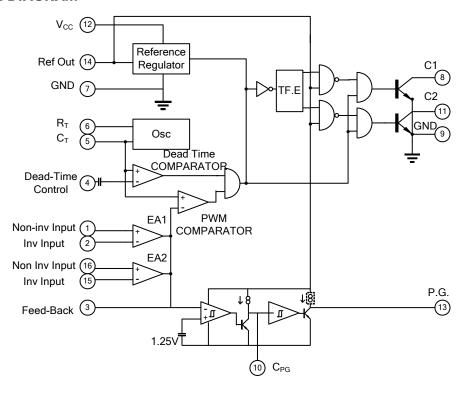

- * Fully integrated with compact 16-pin dip
- * All necessary functions included for most popular half bridge
- * Built-in power good delay and power fail lead function.
- * Power good delay time is linearly.
- * Proportional to external capacitor value.
- * Reduced external components for cost down and components for cost down and compact size.

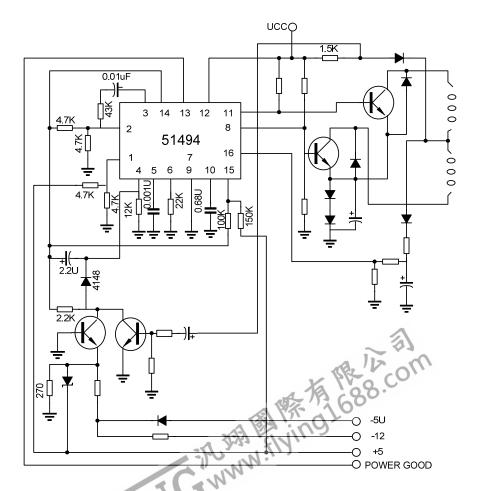
QW-R103-005.Ba


ORDERING INFORMATION

Ordering	g Number	Package	Dealine	
Lead Free	Halogen Free	Packing		
51494L-S16-R	51494G-S16-R	SOP-16	Tape Reel	
51494L-S16-T	51494G-S16-T	SOP-16	Tube	
51494L-D16-T	51494G-D16-T	DIP-16	Tube	

Chunhing 1688.com www.unisonic.com.tw 1 of 5


PIN ASSIGNMENT



PIN	NAME	FUNCTION
1	EA1+	Error amplifier noninverting input, same as pin 1 of 494
2	EA1-	Error amplifier inverting input, same as pin 2 of 494
3	EA0	Error amplifier output and feedback, same as pin 3 of 494
4	D_T	Dead time control input, same as pin 4 of 494
5	C_T	Connect capacitor to oscillator circuit for operating frequency, same as pin 5 of 494
6	R_T	Connect resistor to oscillator circuit for operating frequency, same as pin 6 of 494
7	GND	Ground terminal of IC, same as pin 7 of 494
8	C1	Collector of output transistor one, same as pin 8 of 494
9	GND	Ground terminal of IC
10	C_{PG}	Terminal for capacitor to determine power good delay time
11	C2	Collector of output transistor two, same as pin 11 of 494
12	V_{CC}	Supply voltage, same as pin 12 of 494
13	P.G.	Output for power good signal
14	V_{REF}	Reference voltage output, same as pin 14 of 494
15	EA2-	Error amplifier inverting input, same as pin 15 of 494
16	EA+	Error amplifier noninverting input, same as pin 16 of 494

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise specified, all is over operating free-air temperature Range)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	42	V
Voltage from any pin to ground (except pin8 & pin11)	V_{IN}	V _{CC} +0.3	V
Collector Output Voltage	V_{C1}, V_{C2}	42	V
Peak Collector Output	I _{C1} , I _{C2}	250	mA
Power Dissipation	P_D	1500	mW
Operating Temperature	T_OPR	0 ~ +70	$^{\circ}\!\mathbb{C}$
Storage Temperature	T _{STG}	-40 ~ + 150	$^{\circ}\!\mathbb{C}$
Junction Temperature	TJ	125	$^{\circ}\!\mathbb{C}$

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, T_A=0~70°C, V_{CC}=15V, f=10kHz)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
REFERENCE SECTION									
Reference Voltage		V_{REF}	I _{REF} =1.0mA	4.75	5	5.25	V		
Line Regulation		V_{LINE}	7V <v<sub>CC<40V</v<sub>		2	25	mV		
Load Regulation		V_{ILOAD}	1mA <i<sub>REF<5mA</i<sub>		1	15	mV		
Temperature Coefficient			0°C <f<sub>A<70°C</f<sub>		0.01	0.03	%/℃		
OSCILLATOR SECTION									
Oscillator Frequency		Fosc	$C_T=0.01\mu F$, $R_T=12k\Omega$		10		kHz		
Oscillator Frequency Change Over Operating Temperature Range		Δf_{OSC}	C _T =0.01μF, R _T =12kΩ			2	%		
DEAD TIME CONTROL SECTION									
Input Bias Current (Pin 4)		I _{IB(DT)}	V _{CC} =15V, 0V <v4<5.25v< td=""><td></td><td>-2</td><td>-10</td><td>μΑ</td></v4<5.25v<>		-2	-10	μΑ		
Maximum Duty Cycle, Each Output		D _{C(MAX)}	$V_{CC} = 15V$, Pin 4 = 0V Output Control Pin = V_{REF}	43		45	%		
Input Throohold Voltage	Zero Duty	V _{TH}			3	3.3	V		
Input Threshold Voltage	Max Duty			0			V		
ERROR AMPLIFIER SECTION	ERROR AMPLIFIER SECTION								
Input Offset Voltage		V _{ICS}	V3=2.5V		2	10	mV		
Input Offset Current		I _{ICS}	V3=2.5V		25	250	nA		
Input Bias Current		I_{IB}	V3=2.5V		0.2	1	μΑ		
Input Common-mode Voltage Range V _{ICR}		V _{ICR}	7V <v<sub>CC< 40V</v<sub>	-0.3		Vcc	V		
Large Signal Open-Loop Voltage Range		G_{VO}	0.5V < V3 < 3.5V	60	74		dB		
Unity-Gain Band width		f _C			650		kHz		

■ ELECTRICAL CHARACTERISTICS(Cont.)

DADAMETED	CVMDOL	TEST CONDITIONS	MINI	TVD	MANY	UNIT
						UNIT
OUTPUT SECTION	1	T	1	1		
Collector Off-State Current	I _{C(OFF)}	$V_{CC}=V_{C}=40V, V_{E}=0$		2	100	μΑ
Emitter Off-State Current	I _{E(OFF)}	$V_{CC}=V_{C}=40V, V_{E}=0$			-100	μΑ
Output Saturation Voltage Common-Emitter	$V_{CE(SAT)}$	V _E =15V, L _C =200mA		1.1	1.3	V
OUTPUT CONTROL (pin13)						
Standby Power Supply Current	Icc			6	10	mA
Output AC Characteristic						
Raise Time Common-Emitter	T_R			100	200	ns
Fall Time Common-Emitter	T_R			25	100	ns
PWM COMPARATOR SECTION						
Inhibit Threshold Voltage	V_{THI}	Zero Duty cycle		4	4.5	V
Output Source Current	l ₀ +	0.5V < V3 < 3.5V	2			mA
Output Sink Current	I ₀ -	0.5V < V3 < 3.5V	-0.2	-0.6		mA
POWER GOOD SECTION						
Dawer Coad Dalay Time		$C_D = 1\mu F$	230	280	330	ms
Power Good Delay Time	t _{PD}	$C_D = 0.47 \mu F$	108	130	160	
Power Fail Lead Time	T _{P1}			4		ms
Output High Voltage	V _{OH}	$V_{PINN} = 5V$, $I_L = 1mA$	4.75			V
Output Saturation Voltage	V_{SAT}	V _{PINN} = 5V, I _{SINK} = 4mA			0.4	V
Output Leakage Current	I _{OH}				100	μΑ

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.