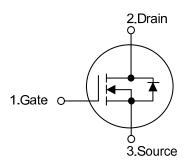
5N60K-MTQ Preliminary Power MOSFET

5A, 600V N-CHANNEL POWER MOSFET

■ DESCRIPTION

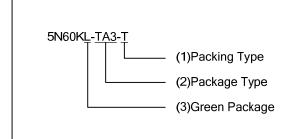

The UTC **5N60K-MTQ** is a high voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

■ FEATURES

- * $R_{DS(ON)}$ < 2.2 Ω @ V_{GS} =10V, I_{D} = 2.5A
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness

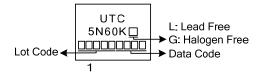
TO-220 TO-220F TO-220F1 TO-220F2 TO-220F3 TO-251 TO-251S TO-251S2 TO-251S4 TO-252 TO-252D TO-262

■ SYMBOL



C. M. Flying 1688.com

■ ORDERING INFORMATION


Ordering Number		Package	Pin	Dooking			
Lead Free	Halogen Free	Package	1	2	3	Packing	
5N60KL-TA3-T	5N60KG-TA3-T	TO-220	G	D S		Tube	
5N60KL-TF1-T	5N60KG-TF1-T	TO-220F1	G	D	S	Tube	
5N60KL-TF2-T	5N60KG-TF2-T	TO-220F2	G	D	S	Tube	
5N60KL-TF3-T	5N60KG-TF3-T	TO-220F	G	D	S	Tube	
5N60KL-TF3T-T	5N60KG-TF3T-T	TO-220F3	G	D	S	Tube	
5N60KL-TM3-T	5N60KG-TM3-T	TO-251	G	D	S	Tube	
5N60KL-TMS-T	5N60KG-TMS-T	TO-251S	G	D	S	Tube	
5N60KL-TMS2-T	5N60KG-TMS2-T	TO-251S2	G	D	S	Tube	
5N60KL-TMS4-T	5N60KG-TMS4-T	TO-251S4	G	D	S	Tube	
5N60KL-TN3-R	5N60KG-TN3-R	TO-252	G	D	S	Tape Reel	
5N60KL-TND-R	5N60KG-TND-R	TO-252D	G	D	S	Tape Reel	
5N60KL-T2Q-T	5N60KG-T2Q-T	TO-262	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

- (1) T: Tube, R: Tape Reel
- (2) TA3: TO-220, TF1: TO-220F1, TF2: TO-220F2 TF3: TO-220F, TF3T: TO-220F3, TM3: TO-251, TMS: TO-251S, TMS2: TO-251S2, TN3: TO-252, TMS4: TO-251S4, TND: TO-252D, T2Q: TO-262,
- (3) L: Lead Free, G: Halogen Free and Lead Free

■ MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	600	V
Gate-Source Voltage		V_{GSS}	±30	V
Continuous Drain Current		I _D	5	Α
Pulsed Drain Current (Note 2)		I _{DM}	20	Α
Avalanche Energy	Single Pulsed (Note 3)			mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Power Dissipation	TO-220/TO-262		100	W
	TO-220F/TO-220F1 TO-220F3		36	W
	TO-220F2	P_{D}	38	W
	TO-251/ TO-251S TO-251S2/TO-251S4 TO-252/TO-252D		54	W
Junction Temperature		T_J	+150	°C
Operation Temperature		T_OPR	-55 ~ +150	°C
Storage Temperature		T_{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

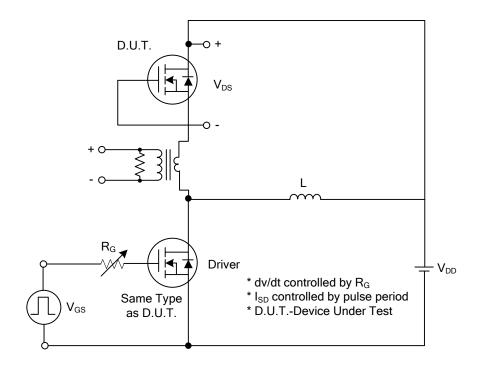
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pulse width limited by $T_{J(MAX)}$
- 3. L = 17.6mH, I_{AS} = 5A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 5A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

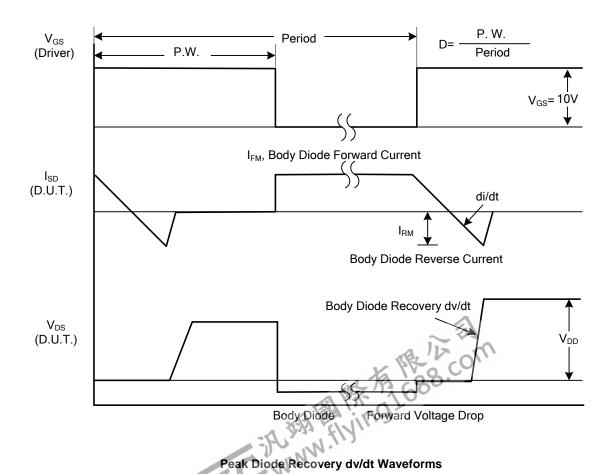
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220/TO-262 TO-220F/TO-220F1 TO-220F2/TO-220F3	0	62.5	°C/W	
	TO-251/ TO-251S TO-251S2/TO-251S4 TO-252/TO-252D	$\theta_{ m JA}$	160	°C/W	
Junction to Case	TO-220/TO-262		1.25	°C/W	
	TO-220F/TO-220F1 TO-220F3		3.47	°C/W	
	TO-220F2	θ_{JC}	3.28	°C/W	
	TO-251/ TO-251S TO-251S2/TO-251S4 TO-252/TO-252D		2.30	°C/W	

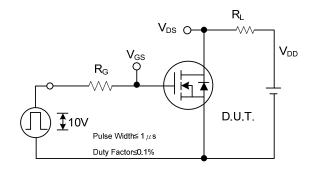
ELECTRICAL CHARACTERISTICS (T_C = 25°C, unless otherwise specified)

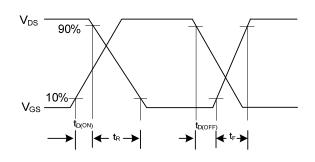

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	600			V	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =600V, V _{GS} = 0V			1	μA	
Gate-Source Leakage Current	Forward	less -	$V_{GS} = 30V, V_{DS} = 0V$			100	π Λ	
	Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA	
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	I _D =250μA, Referenced to 25℃		0.6		V/°C	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V	
Static Drain-Source On-State Resistance		R _{DS(ON)}	$V_{GS} = 10V, I_D = 2.5A$		1.8	2.2	Ω	
DYNAMIC CHARACTERISTICS								
Input Capacitance	out Capacitance		\\ - 25\\ \\ - 0\\		520	620	pF	
Output Capacitance		Coss	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz		65	90	pF	
Reverse Transfer Capacitance		C_{RSS}			8	12	pF	
SWITCHING CHARACTERISTIC	S							
Turn-On Delay Time		$t_{D(ON)}$			50		ns	
Turn-On Rise Time		t_R	V_{DD} =30V, I_{D} =0.5A, R_{G} =25 Ω		55		ns	
Turn-Off Delay Time		$t_{D(OFF)}$	(Note 1, 2)		87		ns	
Turn-Off Fall Time		t_{F}			40		ns	
Total Gate Charge		Q_G	V _{DS} =50V, I _D =1.3A, V _{GS} =10V		25		nC	
Gate-Source Charge		Q_GS	(Note 1, 2)		5.5		nC	
Gate-Drain Charge		Q_GD	(Note 1, 2)		4.5		nC	
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Drain-Source Diode Forward Voltage		V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 5A$			1.4	V	
Maximum Continuous Drain-Source Diode		1.				5	Α	
Forward Current		I _S				Ü	A	
Maximum Pulsed Drain-Source Diode		I _{SM}				20	Α	
Forward Current							_ ^	

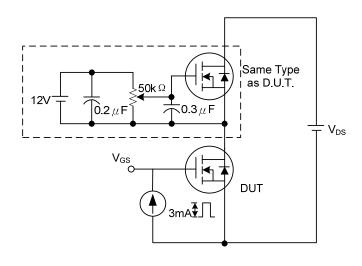
Note: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

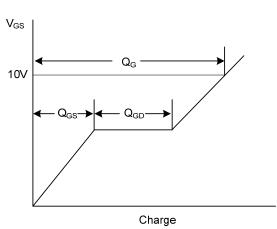


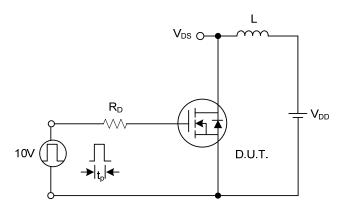
^{2.} Essentially independent of operating temperature

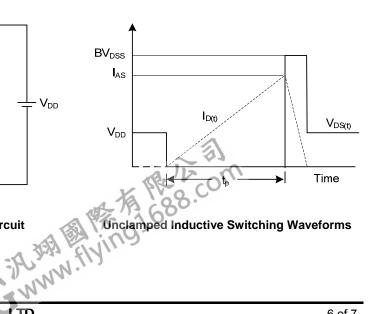

TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit


TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

