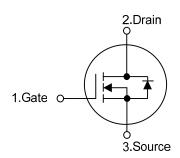
UNISONIC TECHNOLOGIES CO., LTD

6N60K-MTQ **Power MOSFET**

TO-220F1

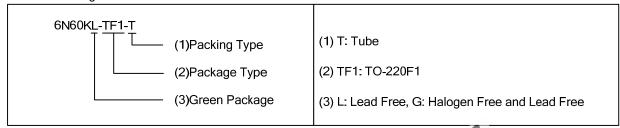
6A, 600V N-CHANNEL **POWER MOSFET**


DESCRIPTION

The UTC 6N60K-MTQ is a high voltage power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche characteristics. This power MOSFET is usually used in high speed switching applications at power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)}$ < 1.8 Ω @ V_{GS} = 10 V, I_{D} = 3 A
- * Fast Switching Capability
- * Improved dv/dt Capability, High Ruggedness


SYMBOL

ORDERING INFORMATION

Ordering Number		Doolsons	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
6N60KL-TF1-T	6N60KG-TF1-T	TO-220F1	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 6 QW-R205-126.b 6N60K-MTQ

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	600	V	
Gate-Source Voltage		V _{GSS}	±30	V	
Avalanche Current (Note 2)		I _{AR}	6	A	
Continuous Drain Current		I _D	6	Α	
Pulsed Drain Current (Note 2)		I _{DM}	24	Α	
Avalanche Energy Single Po	ulsed (Note 3)	E _{AS}	181	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	3.2	V/ns	
Power Dissipation		P _D	36	W	
Junction Temperature		TJ	+150	°C	
Operation Temperature		T _{OPR}	-55 ~ +150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

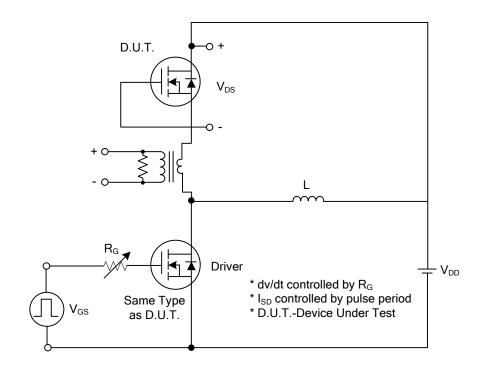
- 2. Pulse width limited by $T_{J(MAX)}$
- 3. L=11.6mH, I_{AS} =5.6A, V_{DD} =90V, R_{G} =25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 6A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

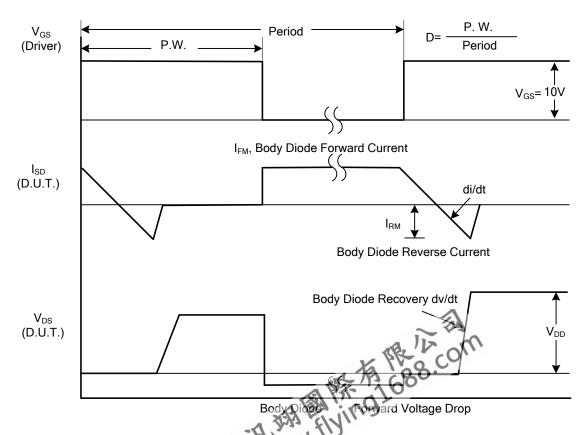
PARAMETER	SYMBOL	RATING	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	3.47	°C/W	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I_D =250 μ A				V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =600V, V _{GS} =0V			1	μΑ
Cata Source Leakage Current Forwa	ard ,	V_{GS} =30V, V_{DS} =0V			100	nA
Gate-Source Leakage Current Rever	rse I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	IIA
Breakdown Voltage Temperature Coeffi	cient △BV _{DSS} /△1	I _D =250μA, Referenced to 25°C		0.53		V/°C
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance	e R _{DS(ON)}	V _{GS} =10V, I _D =3A			1.8	Ω
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ISS}			720		pF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, f=1.0MHz		70		pF
Reverse Transfer Capacitance	C_{RSS}			6.6		pF
SWITCHING CHARACTERISTICS						
Total Gate Charge	Q_G	V _{DS} =50V, V _{GS} =10V, I _D =1.3A, I _G =100μA (Note 1, 2)		48		nC
Gate-Source Charge	Q_GS			4.8		nC
Gate-Drain Charge	Q_GD	1g=100μA (Note 1, 2)		5.2		nC
Turn-On Delay Time	t _{D(ON)}			30		ns
Turn-On Rise Time	t _R	V_{DD} =30V, V_{GS} =10V, I_{D} =0.5A,		25		ns
Turn-Off Delay Time	t _{D(OFF)}	R _G =25Ω (Note 1, 2)		140		ns
Turn-Off Fall Time	t _F			30		ns
DRAIN-SOURCE DIODE CHARACTER	ISTICS AND MA	XIMUM RATINGS				
Maximum Continuous Drain-Source Dio	de I _S				6	Α
Forward Current	ıs				U	^
Maximum Pulsed Drain-Source Diode	I _{SM}				24	Α
Forward Current					24	^
Drain-Source Diode Forward Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 6A$			1.4	V
Reverse Recovery Time	t _{RR}	V _{GS} =0V, I _S =6A,		450		ns
Reverse Recovery Charge	Q_{RR}	$dI_F/dt = 100 A/\mu s$		3.0		μC

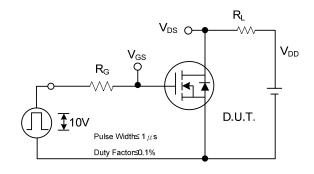

Note: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

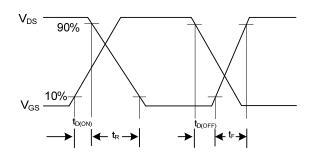
2. Essentially independent of operating temperature.



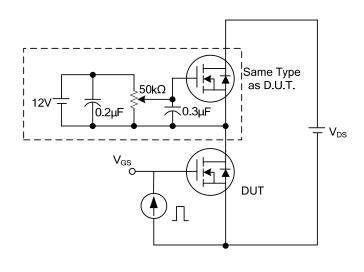
6N60K-MTQ Power MOSFET

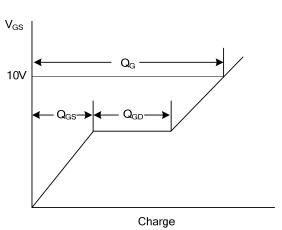
■ TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit

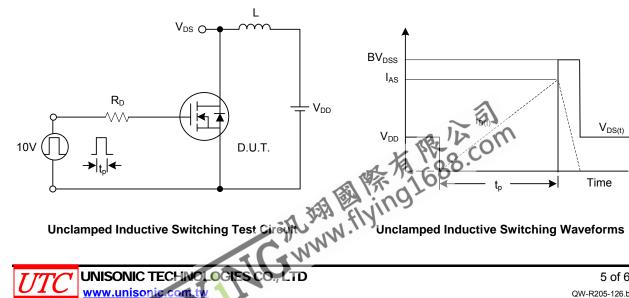


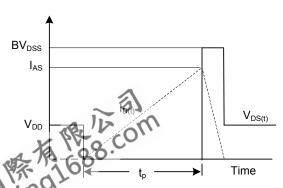
Peak Diode Resovery dv/dt Waveforms


TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings) operating condition ranges, or other parameters) listed in products specifications of any and all NTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior writer consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

