

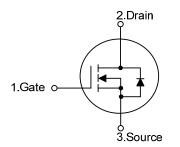
UTC UNISONIC TECHNOLOGIES CO., LTD

6N70

Power MOSFET

6.0A, 700V N-CHANNEL **POWER MOSFET**

DESCRIPTION


The UTC 6N70 is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance, high switching speed, low gate charge and low input capacitance.

The UTC 6N70 is universally applied in high efficiency switch mode power supply.

FEATURES

* R_{DS(ON)}<1.8Ω @ V_{GS}=10V, I_D=3A * High switching speed

SYMBOL -

TO-220F TO-220F1 TO-263 TO-220F2 TO-262

ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Deeking	
Lead Free	Halogen Free	Package 1 2		2	3	Packing	
6N70L-TF1-T	6N70G-TF1-T	6N70G-TF1-T TO-220F1 G D		S	Tube		
6N70L-TF2-T	6N70G-TF2-T	TO-220F2	G	D	S	Tube	
6N70L-TF3-T	6N70G-TF3-T	TO-220F	G	D	S	Tube	
6N70L-T2Q-T	6N70G-T2Q-T	TO-262	G	D	S	Tube	
6N70L-TQ2-T	6N70G-TQ2-T	TO-263	G	D	S	Tube	
6N70L-TQ2-R	6N70G-TQ2-R	TO-263	TO-263 G D S Tape		Tape Reel		
	6N70G-TQ2-R		-		-		

Note: Pin Assignment: G: Gate D: Drain S: Source

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	700	V	
Gate-Source Voltage (Note 2)		V _{GSS}	±30	V	
Drain Current	Continuous T _C =25°C		6	А	
	Continuous $T_c=100^{\circ}C$	I _D	3.8	А	
	Pulsed	I _{DM}	24	А	
Avalanche Current (Note 2)		I _{AR}	6	А	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	582	mJ	
	Repetitive (Note 2)	E _{AR}	13	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.5	V/ns	
	TO-220F1		42		
Dowor Dissinction	TO-220F2		42	w	
Power Dissipation	TO-220F		40	vv	
	TO-262/ TO-263		125		
TO-220F1		P _D	0.33		
Linear Dereting Fee	TO-220F2		0.33	\ N // [®] C	
Linear Derarting Fac	TO-220F		0.32	W/°C	
	TO-262/TO-263		1		
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

■ **ABSOLUTE MAXIMUM RATINGS** (unless otherwise specified)

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature

3. L = 30mH, I_{AS} = 6A, V_{DD} = 50V, R_G = 27 Ω , Starting T_J = 25°C

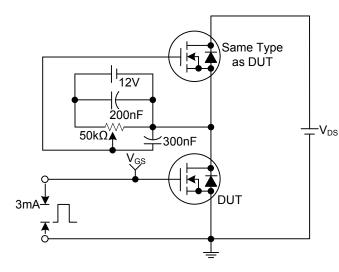
4. $I_{SD} \le 6A$, di/dt $\le 140A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

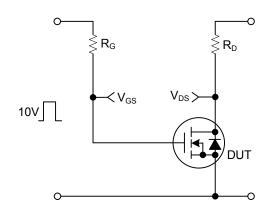
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient		θ _{JA}	62.5	°C/W	
Junction to Case	TO-220F1 TO-220F2		2.9	°C/W	
	TO-220F	θ _{JC}	3.1	°C/W	
	TO-262/TO-263		1.0	°C/W	
	TO-263		1.0	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

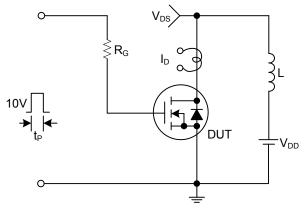
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μΑ, V _{GS} =0V	700			V
Breakdown Voltage Temperature Coefficient		$\Delta BV_{DSS}/\Delta T_{J}$	I _D =250μΑ		0.79		V/°C
Drain-Source Leakage Current		I _{DSS}	V _{DS} =700V			25	μA
			V _{DS} =560V, T _C =125°C			250	μA
Gate-Source Leakage Current	Forward	655	V _{GS} =+30V, V _{DS} =0V			+100	nA
	Reverse		V _{GS} =-30V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$, $V_{DS}=5V$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =3A (Note 1)		1.5	1.8	Ω
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			900	1200	рF
Output Capacitance		C _{OSS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz (Note 1, 2)		90	115	pF
Reverse Transfer Capacitance		C _{RSS}	1 = 1.0 MHz (Note 1, 2)		18	55	рF
SWITCHING PARAMETERS							
Turn-ON Delay Time		t _{D(ON)}	- 		40	70	ns
Rise Time		t _R			65	90	ns
Turn-OFF Delay Time		t _{D(OFF)}	V_{DD} =350V, I_{D} =6A, R_{G} =11.512		190	230	ns
Fall-Time		t⊧			88	116	ns
Total Gate Charge		Q_{G}			110	140	nC
Gate to Source Charge		Q_{GS}	V_{GS} =10V, V_{DS} =560V,		9		nC
Gate to Drain Charge		Q_{GD}	I _D =6A (Note 1, 2)		23.1		nC
SOURCE- DRAIN DIODE RATI	NGS AND CH		TICS	_			
Maximum Body-Diode Continuous Current		Is				6	Α
Maximum Body-Diode Pulsed Current		I _{SM}	Integral reverse pn-diode in the MOSFET			24	^
(Note 3)			ITE MOSPET			24	A
Drain-Source Diode Forward Voltage		V _{SD}	I _S =6A, V _{GS} =0V, T _J = 25°C			1.4	V
(Note 2)			$1_{\rm S}$ - 0A, $v_{\rm GS}$ - 0V, $1_{\rm J}$ - 25 C			1.4	v
Body Diode Reverse Recovery Time		trr	I _F =6A, dI _F /dt=100A/μs,		440		ns
Body Diode Reverse Recovery Charge		Q _{RR}	T _J = 25°C		4.05		μC

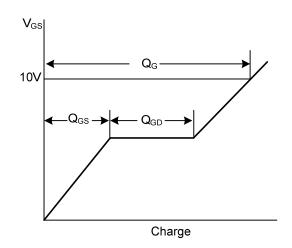

Notes: 1. Pulse Test: Pulse width \leq 250µs, Duty cycle \leq 2%

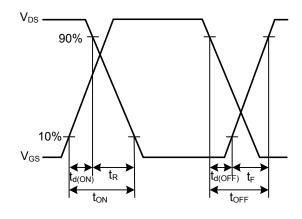
2. Essentially independent of operating temperature

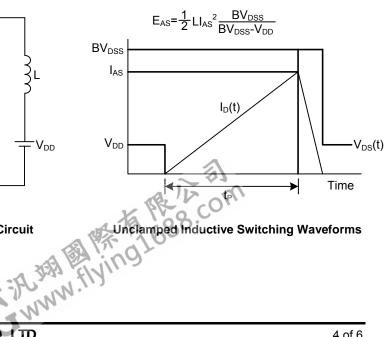

3. Repetitive Rating: Pulse width limited by maximum junction temperature

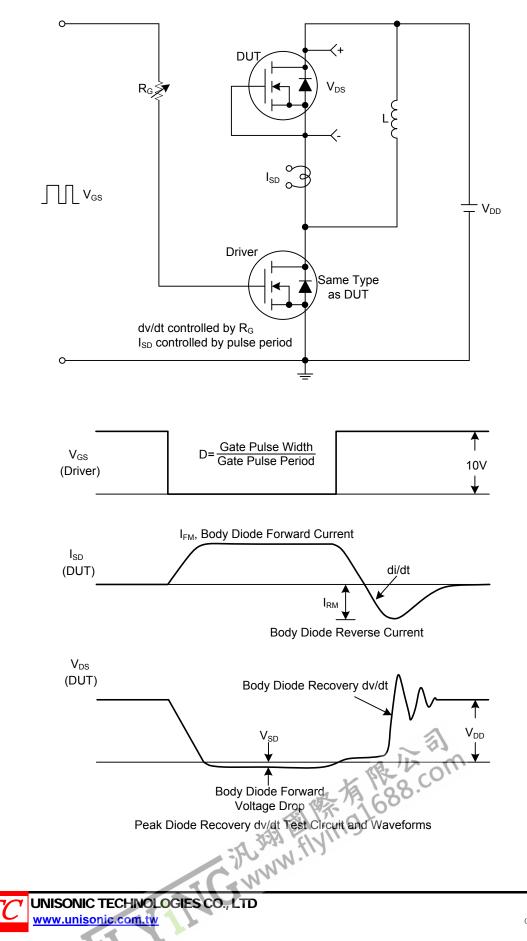
THE MARK AND LOSS. COM UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

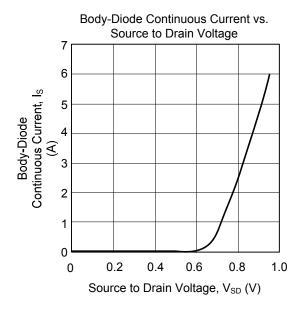

TEST CIRCUITS AND WAVEFORMS


Gate Charge Test Circuit


Resistive Switching Test Circuit


Unclamped Inductive Switching Test Circuit




Resistive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

