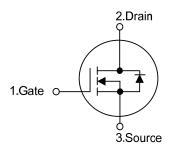


UTC UNISONIC TECHNOLOGIES CO., LTD

7N60-CBQ

Preliminary

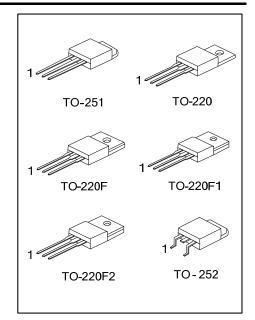
7.0A, 600V N-CHANNEL **POWER MOSFET**


DESCRIPTION

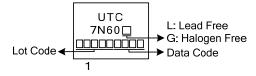
The UTC 7N60-CBQ is a high voltage and high current power MOSFET, designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)}$ < 1.4 Ω @ V_{GS} = 10V, I_D = 3.5A
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION


Ordering Number			Daakaga	Pin Assignment			Deeking	
	Lead Free	Halogen Free	Package	1	2	3	Packing	
	7N60L-TA3-T	7N60G-TA3-T	TO-220	G	D	S	Tube	
	7N60L-TF1-T	7N60G-TF1-T	TO-220F1	G	D	S	Tube	
	7N60L-TF3-T	7N60G-TF3-T	TO-220F2	G	D	S	Tube	
	7N60L-TF3-T	7N60G-TF3-T	TO-220F	G	D	S	Tube	
	7N60L-TM3-R	7N60G-TM3-R	TO-251	G	D	S	Tape Reel	
	7N60L-TN3-R	7N60G-TN3-R	TO-252	G	D	S	Tape Reel	
Note:	Pin Assignment: G: G	ate D: Drain S: Source			2			

7N60L-TA3-T	mar all a					
T T (1)Packing Type	(1) T: Tube, R: Tape Reel					
	TF2: TO-220F2, TM3: TO-251, TN3: TO-252					
(3)Green Package	(3) L: Lead Free, G: Halogen Free and Lead Free					
(2) TA3: TO-220, TF3: TO-220F, TF1: TO-220F1, TF2: TO-220F2, TM3: TO-251, TN3: TO-252						

7N60-CBQ

MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	600	V	
Gate-Source Voltage		V _{GSS}	±30	V	
Droin Current	Continuous	I _D	7.0	A	
Drain Current	Pulsed (Note 2)	I _{DM}	28	A	
Avalanche Current (Note	2)	I _{AR}	3.7	А	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	68	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	1.0	V/ns	
eak blode Recovery dv	TO-220		142	W	
Power Dissipation	TO-220F/TO-220F1 TO-220F2	P _D	$ \frac{SS}{SS} = \frac{600}{130} $ $ \frac{SS}{SS} = \frac{130}{130} $ $ \frac{7.0}{10} $ $ \frac{28}{R} = 3.7 $ $ \frac{3.7}{10} $ $ \frac{68}{10} $ $ \frac{142}{142} $ $ \frac{142}{142} $ $ \frac{142}{142} $ $ \frac{59}{142} $ $ \frac{59}{14} $ $ \frac{59}{1$	W	
	TO-251/TO-252		59	W	
Junction Temperature		TJ	+150	°C	
Operating Temperature		T _{OPR}	-55 ~ +150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

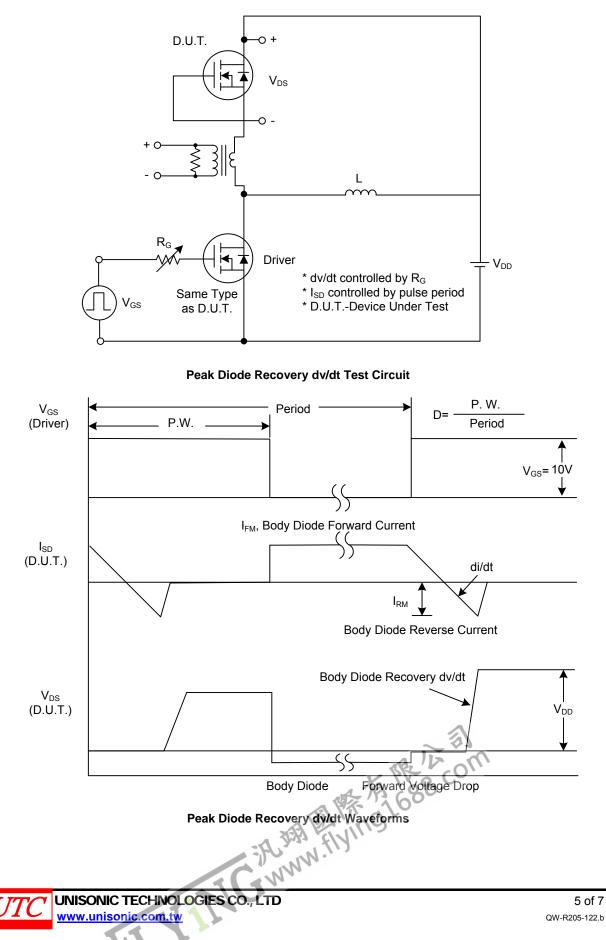
2. Repetitive Rating: Pulse width limited by maximum junction temperature.

- 3. L = 10mH, I_{AS} = 3.7A, V_{DD} = 50V, R_G = 25 $\Omega,$ Starting T_J = 25°C
- 4. $I_{SD} \leq 7.0A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

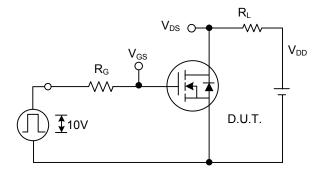
PARAMETER	PACKAGE	SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220/TO-220F TO-220F1/TO-220F2	θ.ιΑ	62.5	°C/W
	TO-251/TO-252	⊂JA	110	°C/W
	TO-220		0.88	°C/W
Junction to Case	TO-220F/TO-220F1 TO-220F2	θ _{JC}	2.6	°C/W
	TO-251/TO-252		2.12	°C/W

7N60-CBQ

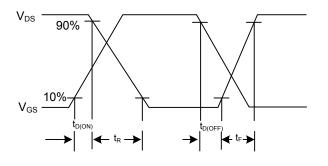

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

		•	. ,				
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS				÷.			
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	600			V
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 600 V, V_{GS} = 0V$			1	μA
Cata Source Lookage Current	Forward	– I _{GSS}	V_{GS} = 30 V, V_{DS} = 0V			100	nA
Gate-Source Leakage Current	Reverse		V _{GS} = -30 V, V _{DS} = 0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State Res	istance	R _{DS(ON)}	V _{GS} = 10V, I _D = 3.5A			1.4	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		CISS			625		рF
Output Capacitance		C _{OSS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz		83		рF
Reverse Transfer Capacitance		C _{RSS}			4.3		рF
SWITCHING CHARACTERISTIC	S						
Total Gate Charge (Note 1)		Q_{G}			64		nC
Gate to Source Charge		Q_{GS}	V _{DS} =50V, V _{GS} =10V, I _D =1.3A I _G =100µA (Note 1, 2)		5.6		nC
Gate to Drain Charge		Q_{GD}	$I_{G} = 100 \mu A (100 e^{-1}, 2)$		3.6		nC
Turn-on Delay Time (Note 1)		t _{D(ON)}			48		ns
Rise Time		t _R	V _{DD} =30V, V _{GS} =10V,		22		ns
Turn-off Delay Time		t _{D(OFF)}	I _D =0.5A, R _G =25Ω (Note 1, 2)		160		ns
Fall-Time		t⊨			25		ns
SOURCE- DRAIN DIODE RATING	GS AND CH	ARACTERIS	TICS				
Maximum Body-Diode Continuous	Current	ls				7	А
Maximum Body-Diode Pulsed Current		I _{SM}				28	Α
Drain-Source Diode Forward Voltage (Note 1)		V_{SD}	V _{GS} = 0V, I _S = 7.0A			1.4	V
Reverse Recovery Time (Note 1)		t _{rr}	V _{GS} =0V, I _S =7.0A		440		ns
Reverse Recovery Charge		Q _{rr}	dI _F /dt = 100 A/µs		2.2		μC
		-					

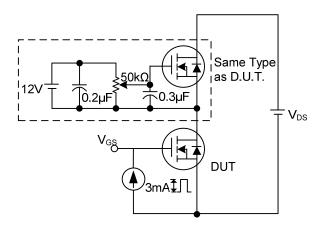
Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

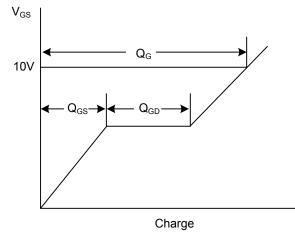

2. Essentially independent of operating temperature.

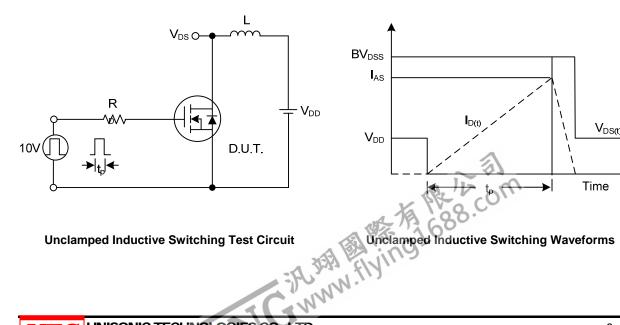
TEST CIRCUITS AND WAVEFORMS



7N60-CBQ


TEST CIRCUITS AND WAVEFORMS (Cont.)




Switching Waveforms

Gate Charge Waveform

6 of 7 QW-R205-122.b

V_{DS(t)}

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

