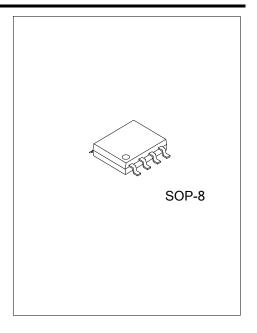
UNISONIC TECHNOLOGIES CO., LTD

86N1C

LINEAR INTEGRATED CIRCUIT

VOLTAGE DETECTING, SYSTEM RESETTING IC

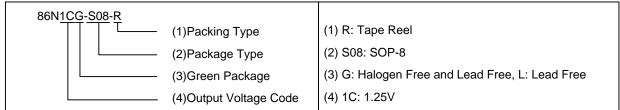
DESCRIPTION

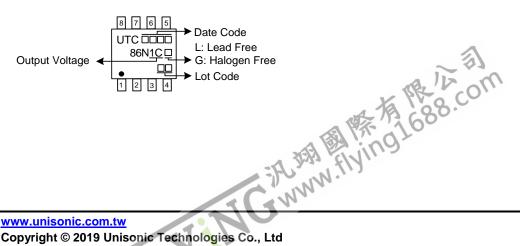

UTC 86N1C, which has the feature of setting the detection voltage by adding external resistance is semiconductor integrated circuit for resetting of all types of logic circuits such as CPUs.

It includes a built-in delay circuit to get the desired retardation time simply by adding an external capacitor.

It is well-suited to extensive applications, including battery checking circuit, waveform shaping circuit and level detecting circuit.

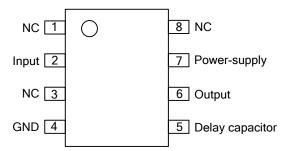
FEATURES


- * Few external parts
- * Low threshold operating voltage (Supply voltage to keep low-state at low supply voltage): 0.6V (Typ) at $R_L=22k\Omega$
- * Large delay time with a capacitor of small capacitance
- * Wide application range
- * Wide supply voltage range: 2V~17V


ORDERING INFORMATION

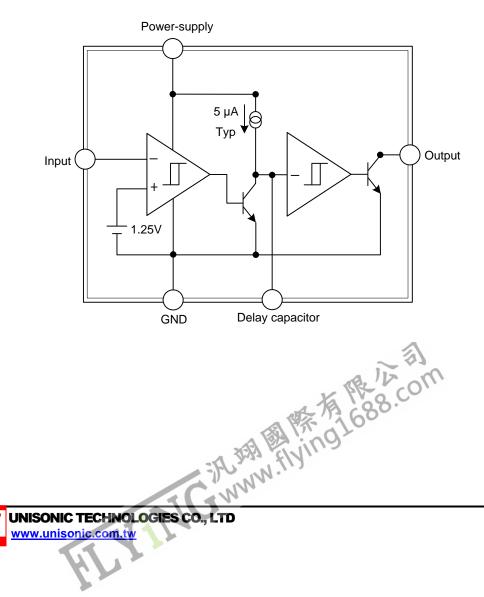
Ordering	Number	Doolsono	Packing	
Lead Free	Halogen Free	Package		
86N1CL-S08-R	86N1CG-S08-R	SOP-8	Tape Reel	

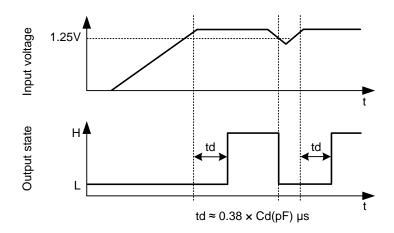
Note: xx: Output Voltage, refer to Marking Information.



MARKING

www.unisonic.com.tw 1 of 8


PIN CONFIGURATION


PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 3, 8	NC	No Connection
2	Input	Input Voltage
4	GND	Ground
5	Delay capacitor	External Delay Capacitor
6	Output	Output
7	Power-supply	Supply Voltage

BLOCK DIAGRAM

OPERATING WAVEFORM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	18	V
Input Voltage Range	V _{CC} ≤7V	V _{IN}	-0.3 ~ V _{CC}	V
	V _{CC} >7V		-0.3 ~ +7	V
Output Sink Current		I _{sink}	6	mA
Output Voltage		Vo	18	V
Power Dissipation		P_D	400	mW
Thermal Derating		Κθ	4.4	mW/°C
Operating Temperature		T _{OPR}	-40 ~ + 85	ô
Storage Temperature		T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Detecting Voltage	Vs			1.20	1.25	1.30	V
Hysteresis Voltage	ΔVs	V _{CC} =5V		9	15	23	mV
Detecting Voltage Temperature Coefficient	V _S /△T				0.01		%/°C
Supply Voltage Range	V_{CC}			2		17	V
Input Voltage Range	V _{IN}	V _{CC} ≤ 7V		-0.3		V_{CC}	V
		V _{CC} >7V		-0.3		7.0	V
Input Current	I _{IN}	V _{IN} =1.25V			100	500	nA
Circuit Current	Icc	V _{CC} =5V			270	540	μΑ
Delay Time	t _{pd}	Cd=0.01µF (Note)		1.6	3.8	7.0	ms
Constant Current	I_{pd}	V _{CC} =5V		-8	-5	-3	μΑ
Output Saturation Voltage	V_{sat}	V _{CC} =5V, V _{IN} <1.2V, Isink=4mA			0.25	0.4	V
Threshold Operating Voltage	V _{OPL}	voltage for IC	$R_L=2.2k\Omega$, $V_{SAT} \le 0.4V$		0.67	0.8	V
			$R_L=100k\Omega$, $V_{SAT} \le 0.4V$		0.55	0.7	V
Output Leakage Current	I _{OH}					30	nA

Note: Please set the desired delay time by attaching capacitor of the range between 4700pF and 10µF.

■ TYPICAL APPLICATION CIRCUIT

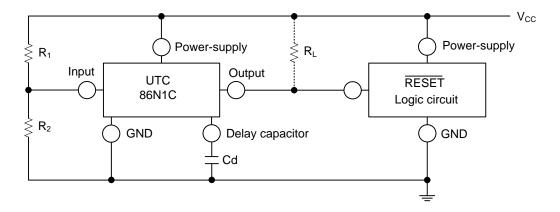


Figure 1 Reset Circuit of UTC 86N1C

Notes: 1. The detecting supply voltage is $V_S \times (R_1 + R_2)/R_2$ (V) approximately. $V_S=1.25V$ (Typ) The detecting supply voltage can be set between 2V and 15V.

- 2. The delay time is about 0.38xCd (pF) µs.
- 3. The logic circuit preferably should not have a pull-down resistor, but if one is present, add load resistor R_L to overcome the pull-down resistor.
- 4. When a negative supply voltage is used, the supply voltage side of UTC **86N1C** and the GND side are connected to negative supply voltage respectively.

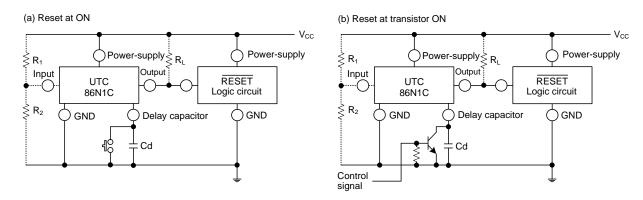


Figure 2 Case of Using Reset Signal except Supply Voltage in the UTC 86N1C

TYPICAL APPLICATION CIRCUIT (Cont.)

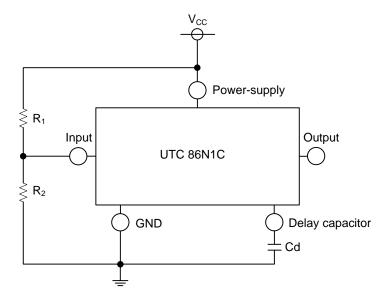
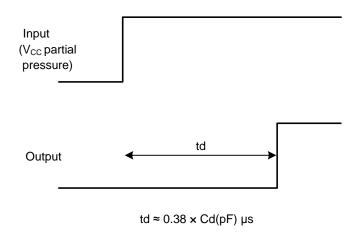
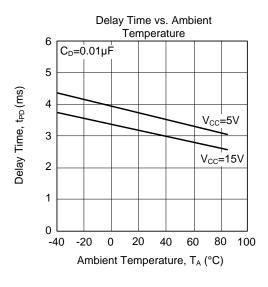
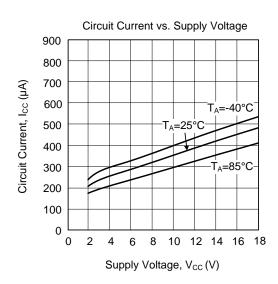
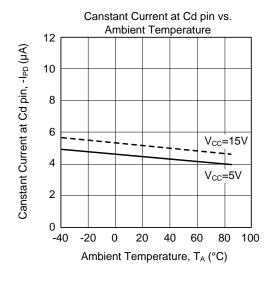



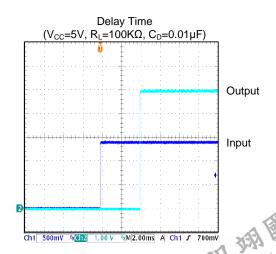
Figure 3 Delay Waveform Generating Circuit

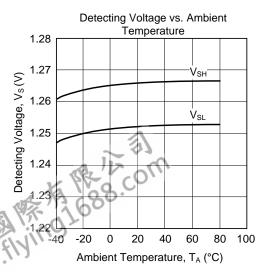
Note: 1. When UTC 86N1C are used, a waveform with a large delay time can generate only by adding a small capacitor.

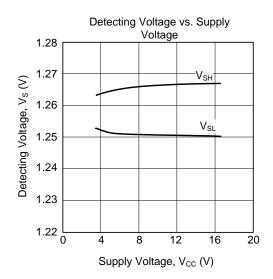


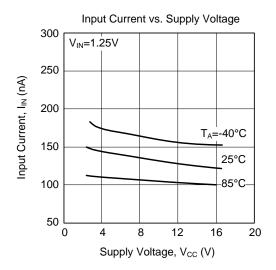

Figure 4 Operating Waveform

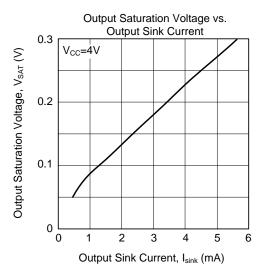



■ TYPICAL CHARACTERISTICS









■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.