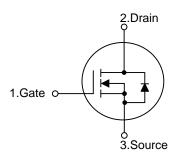


9N65-LD2 **Power MOSFET Preliminary**

9A, 650V **N-CHANNEL POWER MOSFET**

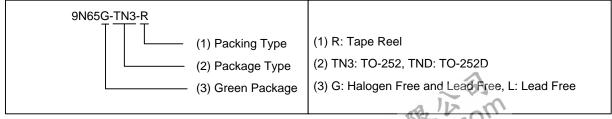
DESCRIPTION


The UTC 9N65-LD2 is an N-channel mode power MOSFET using UTC's advanced technology to provide costumers with planar stripe and DMOS technology. This technology is specialized in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

The UTC 9N65-LD2 is universally applied in active power factor correction and high efficient switched mode power supplies.

FEATURES

- * $R_{DS(ON)} \le 1.2 \Omega @ V_{GS} = 10V, I_D = 4.5A$
- * High switching speed
- * Improved dv/dt capability


SYMBOL

ORDERING INFORMATION

Ordering Number		Daakaaa	Pin Assignment			Daakina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
9N65L-TN3-R	9N65G-TN3-R	TO-252	G	D	S	Tape Reel	
9N65L-TND-R	9N65G-TND-R	TO-252D	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

TO-252 TO-252D

www.unisonic.com.tw 1 of 6

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain to Source Voltage		V_{DSS}	650	V
Gate to Source Voltage		V_{GSS}	±30	V
Continuous Drain Current	Continuous	I _D	9	Α
	Pulsed (Note 2)	I _{DM}	18	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	240	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5	V/ns
Power Dissipation		P _D	55	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

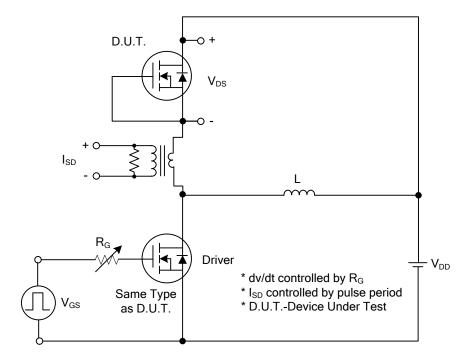
- 2. Repetitive Rating : Pulse width limited by maximum junction temperature.
- 3. L = 30mH, I_{AS} = 4.0A, V_{DD} = 50V, R_{G} = 25 $\Omega,$ Starting T_{J} = 25°C
- 4. $I_{SD} \le 9.0A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C.

■ THERMAL DATA

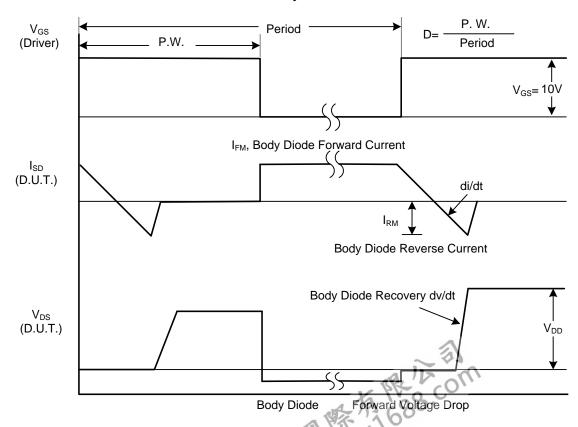
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	110	°C/W	
Junction to Case	θ_{JC}	2.27 (Note)	°C/W	

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

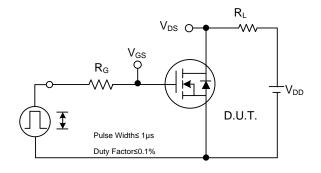

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS}=0V$, $I_D=250\mu A$	650			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =650V, V _{GS} =0V			10	μΑ
Coto Source Legislage Current Forward	I _{GSS}	V_{GS} =+30V, V_{DS} =0V			+100	nΑ
Gate- Source Leakage Current Reverse		V _{GS} =-30V, V _{DS} =0V			-100	nΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =4.5A			1.2	Ω
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ISS}			1240		pF
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1MHz		105		pF
Reverse Transfer Capacitance	C _{RSS}			6		pF
DYNAMIC CHARACTERISTICS						
Total Gate Charge	Q_{G}	V _{DS} =520V, V _{GS} =10V, I _D =9A I _G =1mA (Note 1, 2)		25		nC
Gate-Source Charge	Q_{GS}			7.5		nC
Gate-Drain Charge	Q_{GD}	IG=TITIA (Note 1, 2)		4.6		nC
Turn-on Delay Time (Note 1)	t _{D(ON)}			16		ns
Rise Time	t _R	V _{DS} =100V, V _{GS} =10V, I _D =9A,		18		ns
Turn-off Delay Time	t _{D(OFF)}	R _G =25Ω (Note 1, 2)		76		ns
Fall-Time	t _F			34		ns
SOURCE- DRAIN DIODE RATINGS AND CH	ARACTERIS [*]	TICS				
Maximum Continuous Drain-Source Diode					9	Α
Forward Current	I _S				9	А
Maximum Pulsed Drain-Source Diode	I _{SM}				18	Α
Forward Current					10	А
Drain-Source Diode Forward Voltage (Note 1)	V _{SD}	I _S =9A, V _{GS} =0V			1.4	V
Body Diode Reverse Recovery Time (Note 1)	t _{rr}	I _S =9A, V _{GS} =0V,		450		ns
Body Diode Reverse Recovery Charge	Qrr	dI _F /dt=100A/μs		10		μC

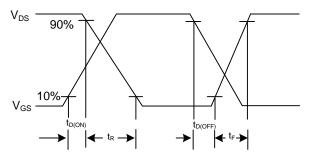
Notes: 1. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%.



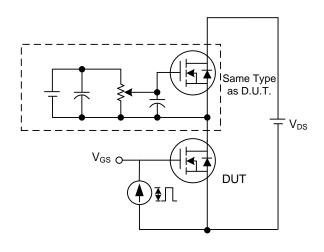
^{2.} Essentially independent of operating temperature.

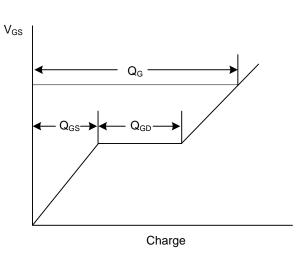
■ TEST CIRCUITS AND WAVEFORMS



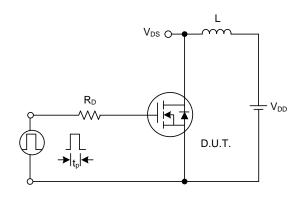

Peak Diode Recovery dv/dt Test Circuit

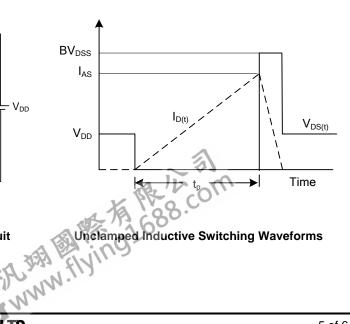
Peak Diode Recovery dv/dt Waveforms


TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

