BRIGHT LED ELECTRONICS CORP．

Specification for Approval

－DEVICE NUMBER：BL－HB337A－TRB

SAMPLES
 ATTACHED AREA

DATE PAGE	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$			CONTENTS
2015.09 .28	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			Initial Released

FOR CUSTOMER＇S APPROVAL STAMP OR SIGNATURE

APPROVED	PURCHASE	MANUFACTURE	QUALITY	ENGINEERING

佰鴻工業股份有限公司 BRIGHT LED ELECTRONICS CORP．新北市板橋區和平路 19 號 3 樓
3F．，No．19，He Ping Road，
Ban Qiao Dist．，New Taipei City， Taiwan
Tel：＋886－2－29591090

ISSUED	APPROVED	PREPARED
（張 ${ }^{\text {2015．09．28 }}$		（任 ${ }^{2015.09 .28}$

BRIGHT LED ELECTRONICS CORP.

Features:

1. Emitted Color: Super Blue
2. Lens Appearance : Water Clear
3. Mono-color type.
4. $1.0 \times 0.5 \times 0.4 \mathrm{~mm}(0402)$ standard package
5. Suitable for all SMT assembly methods.
6. Compatible with infrared and vapor phase refold solder process.
7. Compatible with automatic placement equipment.
8. This product doesn't contain restriction Substance, comply ROHS standard.

Applications:

1. Automotive: Dashboards, stop lamps, turn signals.

Package Dimensions:

NOTES:
1.All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.10 \mathrm{~mm}$ (0.004 ") unless otherwise specified.
3. Specifications are subject to change without notice.
2. Backlighting: LCDs, Key pads advertising.
3. Status indicators: Comsumer \& industrial electronics.
4. General use.

- Absolute Maximum Ratings($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Power Dissipation	Pd	70	mW
Forward Current	I_{F}	20	mA
Peak Forward Current $* 1$	I_{FP}	100	mA
Reverse Voltage	V_{R}	5	V
Operating Temperature	Topr	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	-
Storage Temperature	Tstg	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	See Page 6
Soldering Temperature	Tsol		-

$* 1$ Condition for IFp is pulse of $1 / 10$ duty and 0.1 msec width.

BRIGHT LED ELECTRONICS CORP.

BL-HB337A-TRB

Electrical and optical characteristics($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Forward Voltage	Vf	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	-	2.8	3.2	V
Luminous Intensity	IV	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	12.3	20	-	mcd
Reverse Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	-	-	1	$\mu \mathrm{~A}$
Peak Wave Length	$\lambda \mathrm{p}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	-	460	-	nm
Dominant Wave Length	$\lambda \mathrm{d}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	465	-	470	nm
Spectral Line Half-width	$\Delta \lambda$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	-	30	-	nm
Viewing Angle	$2 \theta_{1 / 2}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	-	120	-	deg

- Typical Electro-Optical Characteristics Curves

Wavelength (nm)

 BRIGHT LED ELECTRONICS CORP.

- Tapping and packaging specifications(Units: mm)

Quantity:1000-3000PCS
USER DIRECTION OF FEED

-Package Method:(unit:mm) Vacuum

12 bag/box

BRIGHT LED ELECTRONICS CORP.

Bin Limits

Intensity Bin Limits (At 5mA)

BIN CODE	Min. (mcd)	Max. (mcd)
K	12.3	18.5
L	18.5	28
M	28	42
N	42	63

Tolerance for each Bin limit is ± 15 \%.

Color Bin Limits (At 5mA)

BIN CODE	Min. (nm)	Max. (nm)
4	465	470

Tolerance for each Bin limit is $\pm 1 \mathrm{~nm}$.
V_{F} Bin Limits (At 5mA)

BIN CODE	Min.(v)	Max.(v)
E	2.4	2.6
F	2.6	2.8
G	2.8	3.0
H	3.0	3.2

Tolerance for each Bin limit is $\pm 0.05 \mathrm{~V}$.

- BIN :

BRIGHT LED ELECTRONICS CORP.

Reliability Test

Classification	Test Item	Reference Standard	Test Conditions	Result
Endurance Test	Operation Life	MIL-STD-750D:1026 MIL-STD-883D:1005 JIS-C-7021 :B-1	Ta: Under room temperature Test time:1,000hrs IF=Product Recommended IF	0/32
	High Temperature High Humidity Storage	$\left\lvert\, \begin{aligned} & \text { MIL-STD-202F:103B } \\ & \text { JIS-C-7021 } \end{aligned}\right.$	$\begin{array}{\|l} \hline \text { Ta: } 85 \pm 5^{\circ} \mathrm{C} \\ \text { RH: } 90 \%-95 \% \\ \text { Test time:240hrs } \end{array}$	0/32
	High Temperature Storage	$\left\lvert\, \begin{array}{ll} \text { MIL-STD-883:1008 } \\ \text { JIS-C-7021 } & \text { :B-10 } \end{array}\right.$	$\begin{aligned} & \text { Ta: } 100 \pm 5^{\circ} \mathrm{C} \\ & \text { Test time: } 1,000 \mathrm{hrs} \end{aligned}$	0/32
	Low Temperature Storage	JIS-C-7021 :B-11	Ta: $-40 \pm 5^{\circ} \mathrm{C}$ Test time $=1,000 \mathrm{hrs}$	0/32
Environmental Test	Temperature Cycling	$\begin{aligned} & \text { MIL-STD-202F:107D } \\ & \text { MIL-STD-750D:1051 } \\ & \text { MIL-STD-883D:1010 } \\ & \text { JIS-C-7021 :A-2 } \end{aligned}$	Ta: $-35 \pm 5^{\circ} \mathrm{C} \sim 25 \pm 5^{\circ} \mathrm{C} \sim 85 \pm 5^{\circ} \mathrm{C} \sim 25 \pm 5^{\circ} \mathrm{C}$ $30 \mathrm{~min} \quad 5 \mathrm{~min} \quad 30 \mathrm{~min} 5 \mathrm{~min}$	0/32
	Thermal Shock	MIL-STD-202F:107D(1980) MIL-STD-750D:1051(1995) MLL-STD-883D:1011(1991)	Ta:- $-40 \pm 5^{\circ} \mathrm{C} \quad \sim+85 \pm 5^{\circ} \mathrm{C}$ $10 \mathrm{~min} \quad 10 \mathrm{~min}$ Time: $20 \mathrm{~min} /$ cycle $\quad 10$ cycle	0/32
	Wetting balance	MIL-STD-883:2003 MIL-STD-202F:208D MIL-STD-883D:2003	$\left\lvert\, \begin{aligned} & \text { Ta: } 230 \pm 5^{\circ} \mathrm{C} \\ & \text { Time }: 5 \pm 0.5 \mathrm{~s} \end{aligned}\right.$	0/32
	Solder Resistance	MIL-STD-202F:210A MIL-STD-883D:1011 JIS-C-7021 :A-1	$\begin{aligned} & \text { Ta: } 260 \pm 10^{\circ} \mathrm{C} \\ & \text { Time: } 10 \pm 1 \mathrm{~s} \end{aligned}$	0/32

Judgment criteria of failure for the reliability

Measuring items	Symbol	Measuring conditions	Judgement criteria for failure
Forward voltage	$\mathrm{V}_{\mathrm{F}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	Initial Level*1.1
Reverse current	$\mathrm{I}_{\mathrm{R}}(\mathrm{uA})$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	Over U*2
Luminous intensity	$\mathrm{IV}(\mathrm{mcd})$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	Initial Level* 0.7

Note: $1 . U$ means the upper limit of specified characteristics.
2.Measurment shall be taken between 2 hours and after the test pieces have been returned to normal ambient conditions after completion of each test.

OIR-Reflow Soldering

1. Avoid any external stress applied to the resin while the LEDs are at high temperature, especially during soldering .
2. Avoid rapid cooling or any excess vibration during temperature ramp-down process
3. Although the soldering condition is recommended above, soldering at the lowest possible temperature is feasible for the LEDs

BRIGHT LED ELECTRONICS CORP.

Dip Soldering

1. Please avoid any external stress applied to the lead-frames and epoxy while the LEDs are at high temperature,especially during soldering
2. DIP soldering and hand soldering should not be done more than one time.
3. After soldering, avoid the epoxy lens from mechanical shock or vibration until the LEDs are back to room temerature.
4. Avoid rapid cooling during temperature ramp-down process
5. Although the soldering condition is recommended above, soldering at the lowest possible temperature is feasible for the LEDs

- IRON Soldering

$300^{\circ} \mathrm{C}$ Within 3 sec.,One time only.

BRIGHT LED ELECTRONICS CORP.

Notes for designing:

Care must be taken to provide the current limiting resistor in the circuit so as to drive the BRIGHT LEDs within the rated figures. Also, caution should be taken not to overload BRIGHT LEDs with instantaneous voltage at the turning ON and OFF of the circuit.
When using the pulse drive care must be taken to keep the average current within the rated figures. Also, the circuit should be designed so as be subjected to reverse voltage when turning off the BRIGHT LEDs.

- Storage:

In order to avoid the absorption of moisture, it is recommended to solder BRIGHT LEDs as soon as possible after unpacking the sealed envelope.

If the envelope is still packed, to store it in the environment as following:
(1) Temperature: $5^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$ Humidity : RH 60% Max.
(2) After this bag is opened, devices that will be applied to infrared reflow, vapor-phase reflow, or equivalent soldering process must be:
a. Completed within 168 hours.
b. Stored at less than $30 \% \mathrm{RH}$.
(3) Devices require baking before mounting, if:
(2) a or (2) b is not met.
(4) If baking is required, devices must be baked under below conditions: 48 hours at $60^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$.

- Package and Label of Products:
(1) Package: Products are packed in one bag of 3000 pcs (one taping reel) and a label is attached on each bag.
(2) Label:

Manufacture Location

