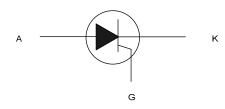
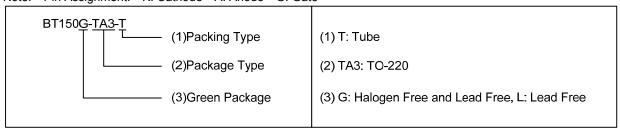

UNISONIC TECHNOLOGIES CO., LTD

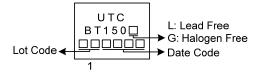
BT150 scr


SCRS

DESCRIPTION

Passivated thyristors in a plastic envelope, intended for use in applications requiring high bidirectional blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching.


■ SYMBOL


ORDERING INFORMATION

Order Number		Doolsons	Pin Assignment			Daakina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
BT150L-TA3-T	BT150G-TA3-T	TO-220	K	Α	G	Tube	

Note: Pin Assignment: K: Cathode A: Anode G: Gate

■ MARKING

www.unisonic.com.tw 1 of 5

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT	
	BT150-500		500(Note 2)	
Repetitive Peak Off-State Voltages	BT150-650	V_DRM	650(Note 2)	V
	BT150-800		800	
Average On-State Current (half sine wave; T	I _{T(AV)}	2.5	Α	
RMS on-State Current (all conduction angles	I _{T(RMS)}	4	Α	
Non-Repetitive Peak On-State Current	t=10ms		35	۸
(half sine wave; T _J = 25 °C prior to surge)	t=8.3ms	I _{TSM}	38	Α
I^2 t for Fusing (t = 10 ms)		l ² t	6.1	A^2s
Repetitive Rate of Rise of On-State Current	d _{IT} /dt	F0	Λ/	
Triggering (I_{TM} = 10 A; I_G = 50 mA; d_{IG} /dt = 50 mA/ms)		50	A/µs	
Peak Gate Current		I_{GM}	2	Α
Peak Gate Voltage	V_{GM}	5	V	
Peak Reverse Gate Voltage	V_{RGM}	5	V	
Peak Gate Power (over any 20 ms period)	P_GM	5	W	
Average Gate Power	P _{G(AV)}	0.5	W	
Operating Junction Temperature	TJ	125 (Note 3)	°C	
Storage Temperature	T _{STG}	-40 ~150	°C	

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Although not recommended, off-state voltages up to 800V may be applied without damage, but the thyristor may switch to the on-state. The rate of rise of current should not exceed 15A/µs.
 - 3. Operation above 110°C may require the use of a gate to cathode resistor of $1k\Omega$ or less.

■ THERMAL RESISTANCES

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient	θ_{JA}		60		K/W
Junction to Case	θ_{JC}			4	K/W

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current	I_{GT}	$V_D = 12V, I_T = 0.1A$		15	200	μΑ
Latching Current	ΙL	V _D =12V, I _{GT} =0.1A		0.17	10	mA
Holding Current	I _H	V _D =12V, I _{GT} =0.1A		0.10	6	mA
On-State Voltage	V_T	I _T =5A		1.23	1.8	V
Gate Trigger Voltage	l \/	$V_D = 12V, I_T = 0.1A$ $V_D = V_{DRM(max)}, I_T = 0.1A, T_J = 110^{\circ}C$	0.1	0.4 0.2	1.5	V
Off-State Leakage Current	I_D , I_R	$V_D = V_{DRM(max)}$, $V_R = V_{RRM(max)}$, $T_J = 125$ °C		0.1	0.5	mA
Critical Rate of Rise of Off-State Voltage	$1 \cup (1 \vee \neg \land (1))$	V_{DM} =67% $V_{DRM(max)}$, T_J =125°C,exponential waveform; R_{GK} =100 Ω		50		V/µs
Gate Controlled Turn-on Time	I Tat	I_{TM} =10A, V_D = $V_{DRM(max)}$, I_G =5mA, dI_G / dt =0.2 A/ μ s		2		μs
Circuit Commutated Turn-off tlme	t_{q}	V_D =67% $V_{DRM(max)}$, T_J =125°C, I_{TM} =8A, V_R =25V, dI_{TM}/dt =10A/ μ s, dV_D/dt =2 V/ μ s, R_{GK} =1K Ω		100		μs

BT150 scr

■ TYPICAL CHARACTERISTICS

Fig 1. Maximum On-State Dissipation, p_{tot} , Versus Average On-State Current, $I_{T(AV)}$, Where a=form factor= $I_{T(RMS)}/I_{T(AV)}$

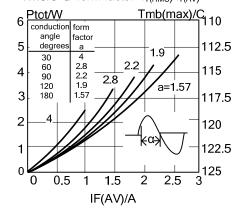


Fig 2. Maximum Permissible Non-Repetitive Peak On-State Current I_{TSM}, Versus Pulse Width tp^r for Sinusoidal Currents, tpl 10ms

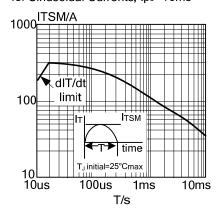


Fig 3. Maximum Permissible Rms Current IT(RMS), Versus Mounting Base Temperature Tmb

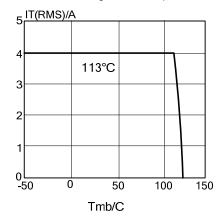


Fig 4. Maximum Permissible Non-Repetitive Peak On-State Current I_{TSM}, Versus Number Of Cycles, For Sinusoidal Currents, f=50HZ

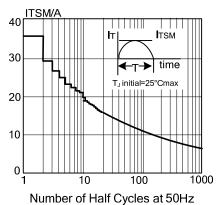


Fig 5. Maximum Permissible Repetitive Rms On-State Current $I_{T(RMS)}$, Versus Surge Duration, For Sinusoidal Currents, f=50HZ; Tmb \mathbb{I} 113°C

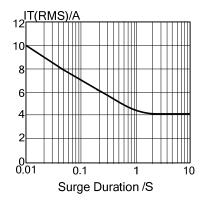
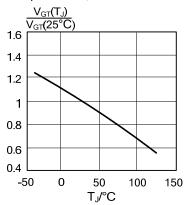



Fig 6. Normalised Gate Trigger Voltage $V_{GT}(T_J)/V_{GT}(25^{\circ}C)$, Versus Junction Temperature T_J

BT150 scr

■ TYPICAL CHARACTERISTICS(Cont.)

Fig 7. Normalised Gate Trigger Current $I_{GT}(T_J)/I_{GT}(25^{\circ}C)$, Versus Junction Temperature T_J

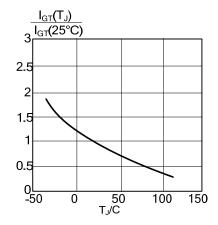


Fig 9. Normalised Holding Current $I_H(T_J)/I_H(25^{\circ}C)$, Versus Junction Temperature T_J

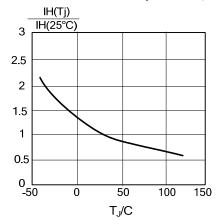


Fig 11.Transient Thermal Impedance Zthj-mb, Versus Pulse Width tp

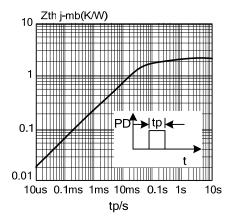


Fig 8. Normalised Latching Current $I_L(T_J)/I_L(25^{\circ}C)$, Versus Junction Temperature T_J

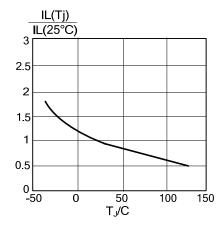


Fig 10. Typical and Maximum On-State Characteristic

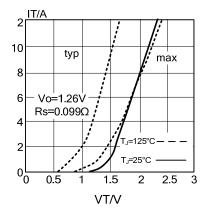
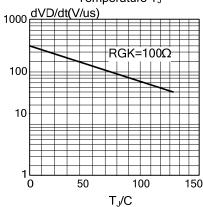



Fig 12. Typical, Critical Rate Of Rise Of Off-State Voltage, dV_D/dt Versus Junction Temperature T_J

BT150 scr

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.