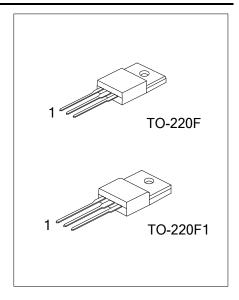


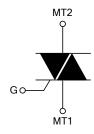
UNISONIC TECHNOLOGIES CO., LTD

BTA04 **TRIAC**

SENSITIVE GATE TRIAC

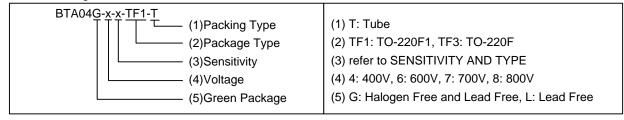

DESCRIPTION

The UTC BTA04 is a 4A triac, it uses UTC's advanced technology to provide customers with high commutation performances and voltage insulated tab, etc.


The UTC BTA04 is suitable for inductive loads, general purpose AC switching and an ON/OFF function in applications such as induction motor starting circuits, for phase control operation in light dimmers and static relays, etc.

FEATURES

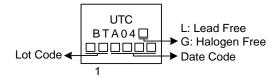
- * Low gate trigger current
- * Low holding current


SYMBOL

ORDERING INFORMATION

Ordering	Daakana	Pin	Assignn	Da alda a		
Lead Free Halogen Free		Package	1	2	3	Packing
BTA04L-x-x-TF1-T	BTA04G-x-x-TF1-T	TO-220F1	MT1	MT2	G	Tube
BTA04L-x-x-TF3-T	BTA04G-x-x-TF3-T	TO-220F	MT1	MT2	G	Tube

Note: Pin Assignment: MT1: MT1 MT2: MT2 G: Gate


SENSITIVITY AND TYPE

DADT NUMBER		VOL	ΓAGE		OF NOITIVITY	TVDE			
PART NUMBER 400V		600V	700V	800V	SENSITIVITY	TYPE			
Α	0				10mA	STANDARD			
S			0	0	10mA	STANDARD			
D		0			5mA	STANDARD			
Т	0	0	0	0	5mA	STANDARD			

⊚: Available

BTA04

■ MARKING

BTA04 TRIAC

■ ABSOLUTE MAXIMUM RATINGS

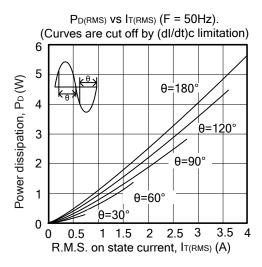
PARAMETER	SYMBOL	RATINGS	UNIT	
RMS On-State Current (360° Conduction Angle)	T _C =90°C	I _{T(RMS)}	4	А
Non Repetitive Surge Peak On-State	t _p =8.3ms	I _{TSM}	42	Α
Current (T _J initial=25°C)	t _p =10ms	112111	40	Α
I ² t Value	t _p =10ms	l ² t	8	A^2s
Critical Rate of Rise of On-State Current:	Repetitive F=50Hz	dl/dt	10	A/µs
I _G =50mA, dI _G /dt=0.1A/μs	Non Repetitive	di/dt	50	A/µs
	400 T/A		400	V
Repetitive Peak Off-State Voltage	600 T/D	\/ \/ \/ \/	600	V
(T _J =125°C)	700 T/S	V_{DRM}/V_{RRM}	700	V
	800 T/S		800	V
Peak Gate Current	t _p =20µs	I _{GM}	4	Α
Peak Positive Gate Voltage	t _p =20µs	V_{GM}	16	V
Peak Positive Gate Power Dissipation	t _p =20µs	P _{GM)}	40	W
Average Gate Power Dissipation		P _{G(AV)}	1	W
Operating Junction Temperature	T_J	-40 ~ +125	°C	
Storage Junction Temperature	·	T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	60	°C/W
Junction to Case for 360° Conduction Angle (F=50Hz) (AC)	0	3.3	°C/W
Junction to Case (DC)	θ _{JC}	4.4	°C/W

BTA04 TRIAC


■ ELECTRICAL CHARACTERISTICS

DADAMETED	RAMETER SYMBOL TEST CONDITION		PITIONS	Т		D		S			А			UNIT		
TAKAWETEK	OTWIDOL	TEGT COND	MIN		TYP	MAX	MIN	TYP		MIN	TYP	MAX	MIN	TYP		OIVIII
Gate Trigger	I _{GT}	$V_D=12V (DC)$ $R_L=33\Omega$	1-11-111			5			5			10			10	mA
Current	161		IV			5			10			10			25	mA
Gate Trigger Voltage	V_{GT}	T _J =25°C	ALL			1.5			1.5			1.5			1.5	V
Gate Non-Trigger Voltage	$V_{\sf GD}$	$V_D = V_{DRM}$, $R_L = 3.3 k\Omega$, $T_J = 125 ^{\circ}C$	ALL	0.2			0.2			0.2			0.2			V
Time Gate Trigger	t _{GT}	$V_D=V_{DRM}$, $I_G=40$ mA, $dI_G/dt=0.5$ A/ μ s, $T_J=25$ °C	ALL		2			2			2			2		μs
Holding Current (Note 1)	l _Η	I _T =100mA, Gate T _J =25°C	e Open,			15			15			25			25	mA
Latching	ΙL	I _G =1.2I _{GT} ,	I-III-IV		10			10			20			20		mA
Current	٠	T _J =25°C	II		20			20			40			40		mA
Peak On-State Voltage (Note 1)	V _{TM}	I _{TM} =5.5A, t _p =380μs, T _J =25°C				1.65			1.65			1.65			1.65	V
Repetitive Peak	I _{DRM}	V _{DRM} Rated	T _J =25°C			0.01			0.01			0.01			0.01	mA
Off-State Current	I _{RRM}	V _{ppu} Rated	T _J =125°C			0.75			0.75			0.75			0.75	mA
Critical Rate of Rise of Off-State Voltage (Note 1)	dV/dt	Linear Slope up to V _D =67%V _{DRM} , Gate Open, T _J =125°C			10			10		10			10			V/µs
Critical Rate of Rise of Off-State Voltage at Commutation (Note 1)	(dV/dt)c	(dI/dt)c=1.8A/ms, T _J =125°C			1			1			5			5		V/µs

Note: For either polarity of electrode MT2 voltage with reference to electrode MT1.

BTA04

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.