

40V 250mA Ultralow Quiescent Current LDO

General Description

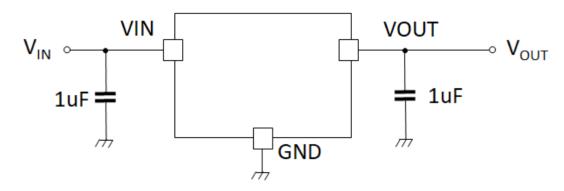
The EHP8041 is a high voltage, low quiescent current, low dropout regulator with 250mA output driving capacity. The EHP8041, which operates over an input range up to 40V, is stable with any capacitors, whose capacitance is larger than $1\mu F$, and suitable for powering battery-management ICs because of the virtue of its low quiescent current consumption and low dropout voltage.

The EHP8041 is available in SOT23-3, SOT23-5 and SOT89-3 surface mount packages.

Applications

- Logic Supply for High Voltage Batteries
- 3-4 Cell Li-ion Batteries Powered systems

Features

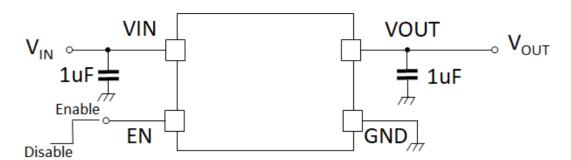

- Up to 40V input voltage range
- 250mA output current driving capacity
- Ultra low quiescent current (typical 1.5µA)
- 1200mV typical dropout at IouT = 250 mA
- Thermal shutdown protection
- Short circuit protection
- Stable with 1µF output capacitor

Ordering Information

Part Number	Remark
EHP8041-XXVD03NRR	±2% output voltage tolerance
EHP8041-XXVF05NRR	±2% output voltage tolerance
EHP8041-XXVL03NRR	±2% output voltage tolerance

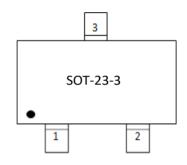
XX:15=1.5V, 18=1.8V, 25=2.5V, 33=3.3V, 50=5.0V

Typical Application



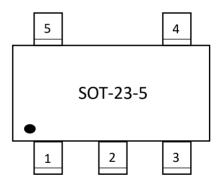
Elite Semiconductor Microelectronics Technology Inc.

Publication Revision: 3.1


Date: Jun. 2022

Connection Diagrams

Order information

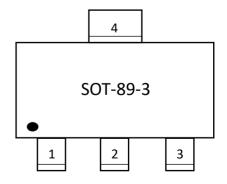


EHP8041-XXVD03NRR

XX Output voltage VD03 SOT-23-3 Package

NRR RoHS & Halogen free package Rating: -40

to 85°C Package in Tape & Reel



EHP8041-XXVF05NRR

XX Output voltage VF05 SOT-23-5 Package

NRR RoHS & Halogen free package Rating: -40

to 85°C Package in Tape & Reel

EHP8041-XXVL03NRR

XX Output voltage VL03 SOT-89-3 Package

NRR RoHS & Halogen free package Rating: -40

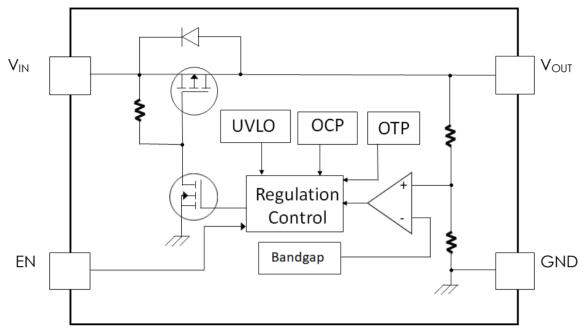
to 85°C Package in Tape & Reel

Order, Marking and Packing Information

Package	Vout	Product ID.	Marking	Packing
	1.5V	EHP8041-15VD03NRR		
	1.8V	EHP8041-18VD03NRR	3	
SOT-23-3	2.5V	EHP8041-25VD03NRR	8041 Tracking Code	Tape & Reel
	3.3V	EHP8041-33VD03NRR	PHI DX 1 2	3Kpcs
	5.0V	EHP8041-50VD03NRR		
	1.5V	EHP8041-15VF05NRR		
	1.8V	EHP8041-18VF05NRR	5 4	Tana 8 Daal
SOT-23-5	2.5V	EHP8041-25VF05NRR	8041 Tracking Code	Tape & Reel 3Kpcs
	3.3V	EHP8041-33VF05NRR	PINL DOX 1 2 3	
	5.0V	EHP8041-50VF05NRR	PINEL DOK	
	1.5V	EHP8041-15VL03NRR	4	
	1.8V	EHP8041-18VL03NRR	8041	
SOT-89-3	2.5V	EHP8041-25VL03NRR	Tracking Code	Tape & Reel 1Kpcs
	3.3V	EHP8041-33VL03NRR	PIN DOT 1 2 3	TNDC3
	5.0V	EHP8041-50VL03NRR		

Pin Functions

Name	SOT-23-3	SOT-23-5	SOT-89-3	Function
				Supply Voltage Input
VIN	3	1	1	Require a minimum input capacitor of close to 1µF to ensurestability
				and sufficient decoupling from the ground pin.
GND	1	2	2, 4	Ground Pin
EN	N/A	3	N/A	Shutdown Input
NC	N/A	4	N/A	No connection
V _{OUT}	2	5	3	Output Voltage


Elite Semiconductor Microelectronics Technology Inc.

Publication Da Revision: 3.1

Date: Jun. 2022

Functional Block Diagram

Functional Block Diagram of EHP8041

Publication Revision: 3.1

Date: Jun. 2022

Absolute Maximum Ratings (Note 1, 2)

V_{IN}, EN -0.3V to 45V Junction Temperature (T_J) 125°C 260°C

Storage Temperature Range -65°C to 150°C Lead Temperature (Soldering, 10 sec.)

ESD Rating

2KV Human Body Model

Recommended Operating Conditions (Note 1, 2)

Supply Voltage 2.7V to 40V Operating Temperature Range -40°C to 85°C

Thermal Resistance:

Symbol	θ _{JA} (Note 3)	θ _{JC} (Note 4)
SOT-23-3	250(°C/W)	81(°C/W)
SOT-23-5	152(°C/W)	81(°C/W)
SOT-89-3	90(°C/W)	52(°C/W)

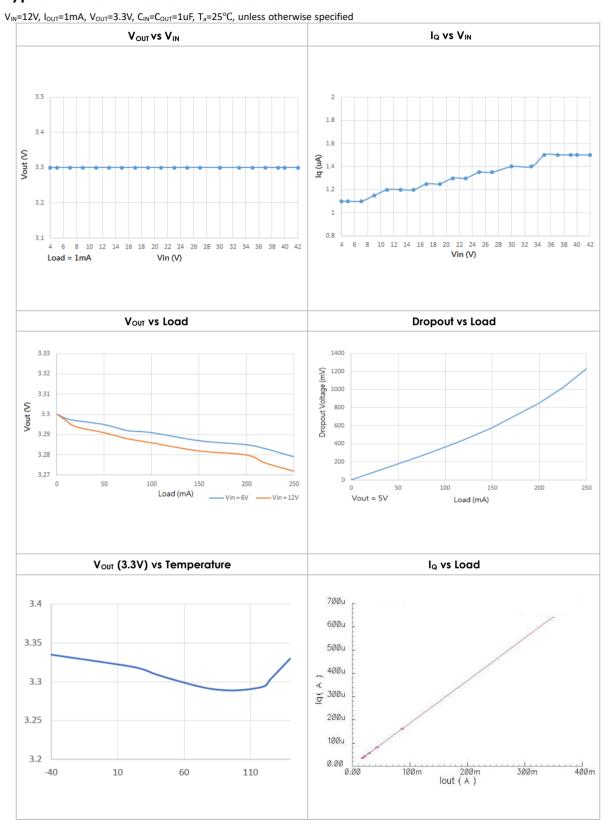
Electrical Characteristics

 $V_{IN}=12V$, $I_{OUT}=1$ mA, $C_{IN}=C_{OUT}=1$ uF, $T_{\alpha}=25$ °C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Output Voltage	Vout		-2%		2%	٧
Line Regulation	△VLINE	V _{IN} =V _{OUT} + 1V to 40V,		0.1		%
Load Regulation	$\triangle V_{LOAD}$	I _{OUT} = 1mA to 100mA		0.5		%
Dran aut Vallaga		I _{OUT} =100mA		400		mV
Dropout Voltage	V_{DROP}	I _{OUT} =250mA		1200		mV
Quiescent Current	lα	T₀= 25°C		1.5	4.0	υA
Current Limit	Icl		270	340		mA
Enable high level	V _{ENHI}		0.9			٧
Enable low level	V _{ENLO}				0.4	٧
Enable pin pull high current	I _{EN}			0.1		υA
Thermal Shutdown	T _{SD}			140		°C
Thermal Shutdown Hysteresis	T _{HY}			20		°C
Power-supply rejection ratio	DCDD	f = 1kHz		80		dB
	PSRR	f = 10kHz		60		dB

Note 1: Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

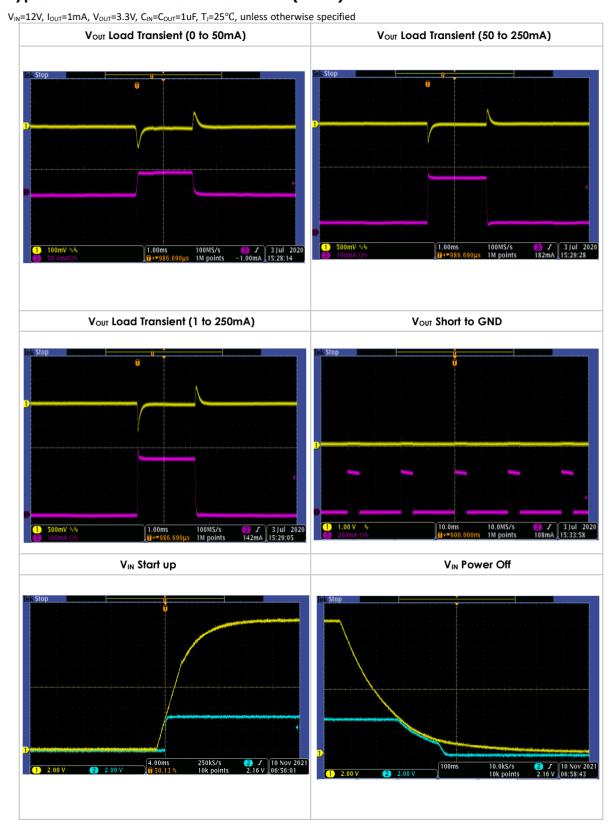
Note 2: All voltages are with respect to the potential at the ground pin.


Note 3: θ_{JA} is measured in the natural convection at T_J=25°C on a high effective thermal conductivity test board (2 layers, 2S0P).

Note 4: θ_{JC} represents the resistance to the heat flows the chip to package top case.

Publication Date: Jun. 2022 Revision: 3.1 5/13

Typical Performance Characteristics



Publication Date: Revision: 3.1

Jun. 2022

Typical Performance Characteristics (cont.)

Publication Date: Jun. 2022 Revision: 3.1 **7/13** **Application Information**

Output Capacitor

The EHP8041 is specially designed for use with ceramic output capacitors of as low as 1 µF to take advantage of

the savings in cost and space as well as the superior filtering of high frequency noise. Capacitors of higher value

or other types may be used, but it is important to make sure its equivalent series resistance (ESR) is restricted to

less than 0.5Ω . The use of larger capacitors with smaller ESR values is desirable for applications involving large

and fast input or output transients, as well as for situations where the application systems are not physically

located immediately adjacent to the battery power source. Typical ceramic capacitors suitable for use with the

EHP8041 are X5R and X7R. The X5R and the X7R capacitors are able to maintain their capacitance values to

within ±20% and ±10%, respectively, as the temperature increases.

Input Capacitor

A minimum input capacitance of 1µF is required for EHP8041. The capacitor value may be increased without limit.

Improper workbench set-ups may have adverse effects on the normal operation of the regulator. A case in point

is the instability that may result from long supply lead inductance coupling to the output through the gate

capacitance of the pass transistor. This will establish a pseudo LCR network, and is likely to happen under high

current conditions or near dropout. A 10µF tantalum input capacitor will dampen the parasitic LCR action thanks

to its high ESR. However, cautions should be exercised to avoid regulator short-circuit damage when tantalum

capacitors are used, for they are prone to fail in short-circuit operating conditions.

Power Dissipation and Thermal Shutdown

Thermal overload results from excessive power dissipation that causes the IC junction temperature to increase

beyond a safe operating level. The EHP8041 relies on dedicated thermal shutdown circuitry to limit its total power

dissipation. An IC junction temperature T_J exceeding 140°C will trigger the thermal shutdown logic, turning off the

P-channel MOS pass transistor. The pass transistor turns on again after the junction cools off by about 20°C. When

continuous thermal overload conditions persist, this thermal shutdown action then results in a pulsed waveform

at the output of the regulator. The concept of thermal resistance θ_{JA} (°C/W) is often used to describe an IC

junction's relative readiness in allowing its thermal energy to dissipate to its ambient air. An IC junction with a low

thermal resistance is preferred because it is relatively effective in dissipating its thermal energy to its ambient, thus

resulting in a relatively low and desirable junction temperature. The relationship between θ_{JA} and T_J is as follows:

 $T_J = \Theta_{JA} \times (P_D) + T_A$

 T_A is the ambient temperature, and PD is the power generated by the IC and can be written as:

 $P_D = I_{OUT} (V_{IN} - V_{OUT})$

As the above equations show, it is desirable to work with ICs whose θJA values are small such that TJ does not

EHP8041

increase strongly with PD. To avoid thermally overloading the EHP8041, refrain from exceeding the absolute maximum junction temperature rating of 125°C under continuous operating conditions. Overstressing the regulator with high loading currents and elevated input-to-output differential voltages can increase the IC die temperature significantly.

Maximum power dissipation for the device is calculated using the following equation:

$$PD = \frac{TJ(max) - TA}{\Theta JA}$$

Where TJ(MAX) is the maximum junction temperature, T_A is the ambient temperature, and θ JA is the junction-to-ambient thermal resistance. For example,

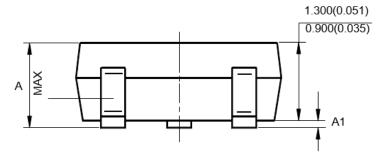
for the SOT-23-3 package θ_{JA} =250°C/W, TJ(MAX)=125°C and using T_A=25°C, the maximum power dissipation is 0.4W. for the SOT-23-5 package θ_{JA} =152°C/W, TJ(MAX)=125°C and using T_A=25°C, the maximum power dissipation is 0.65W. for the SOT-89-3 package θ_{JA} =90°C/W, TJ(MAX)=125°C and using T_A=25°C, the maximum power dissipation is 1.1W.

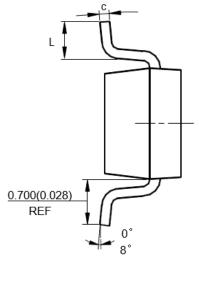
Shutdown

The EHP8041 enters the sleep mode when the EN pin is low. When this occurs, the pass transistor, the error amplifier, and the biasing circuits, including the bandgap reference, are turned off, thus reducing the supply current to typically 1µA. Such a low supply current makes the EHP8041 best suited for battery-powered applications. The maximum guaranteed voltage at the EN pin for the sleep mode to take effect is 0.3V.

Elite Semiconductor Microelectronics Technology Inc.

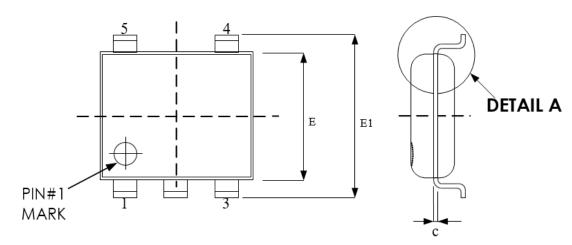
Publication Date: J Revision: 3.1 9/13


Jun. 2022

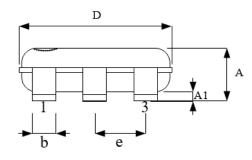


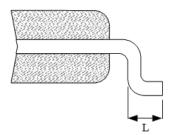
Package Outline Drawing SOT-23-3

TOP VIEW


SIDE VIEW

C11	Dimension in mm		
Symbol	Min.	Max.	
А	0.90	1.45	
A1	0.00	0.15	
b	0.30	0.50	
С	0.10	0.20	
D	2.82	3.10	
Е	1.50	1.70	
E1	2.60	3.00	
e	1.80	2.00	
L	0.30	0.60	


Publication Date: Jun. 2022 Revision: 3.1 10/13

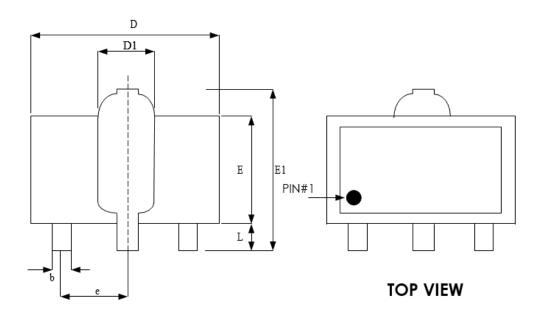


Package Outline Drawing SOT-23-5

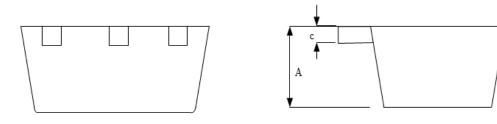
TOP VIEW

SIDE VIEW

DETAIL A


C 1 1	Dimension in mm		
Symbol	Min.	Max.	
А	0.90	1.45	
A1	0.00	0.15	
b	0.30	0.50	
С	0.08	0.25	
D	2.70	3.10	
Е	1.40	1.80	
E1	2.60	3.00	
е	0.95 BSC		
L	0.30	0.60	

Publication Revision: 3.1


Date: Jun. 2022 11/13

Package Outline Drawing SOT-89-3

BOTTOM VIEW

SIDE VIEW

Crumala ol	Dimension in mm		
Symbol	Min	Max	
А	1.4	1.6	
b	0.4	0.56	
С	0.35	0.41	
D	4.4	4.6	
D1	1.5	1.83	
Е	2.29	2.6	
E1	3.94	4.25	
e	1.50 BSC		
L	0.89	1.2	

Publication Revision: 3.1

Jun. 2022 12/13

Date:

Revision History

Revision	Date	Description
0	2021.12.16	Original
1	2022.03.14	Electrical Characteristics(Line &Load regulation) description change.
2	2022.03.17	Add Notes/Thermal Resitance and make corrections.
3	2022.3.24	Modify Marking and Package outline.
3.1	2022.6.13	Correct some errors.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Revision: 3.1

Jun. 2022