UNISONIC TECHNOLOGIES CO., LTD

F2970 **Preliminary**

LINEAR INTEGRATED CIRCUIT

FOR FAN MOTOR SINGLE-PHASE FULL-WAVE **DRIVER**

DESCRIPTION

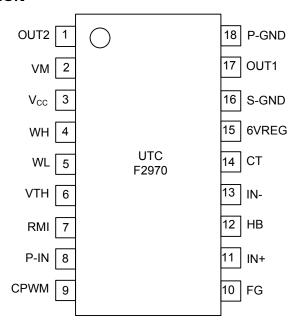
The UTC F2970 is a single-phase full-wave bipolar driver control IC with excellent efficiency for fan motor.

FEATURES

- * Single-phase full-wave drive (16V to 1.2A transistors are built in)
- * Speed adjustment function by thermistor input and external signal incorporated
- →Enables silent and low-vibration variable speed control through direct PWM control with separately-excited upper t_R
- * Kick-back absorption circuit are built in
- * Current limiter function (The limiter value determined with Rf, limit at I_0 =480mA with R_L =1 Ω connection,)
- * Low-consumption, low-loss, and low-noise drive enabled by the soft switching circuit during phase shift
- * HB incorporated
- * Lock protection and automatic reset functions incorporated
- * FG (rotation detection) output
- * Regeneration Di incorporated with less external parts
- * Thermal shutdown circuit incorporated

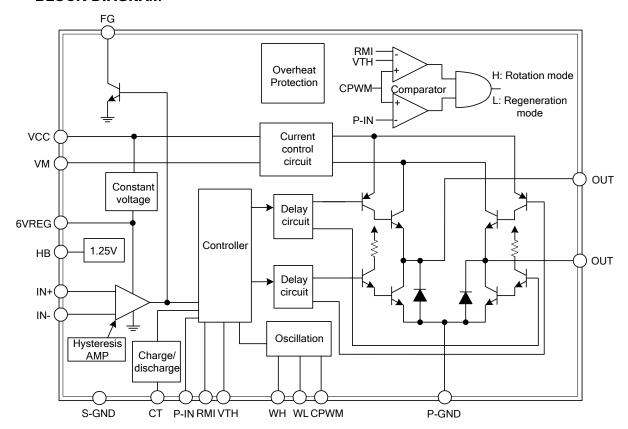
SOP-18

ORDERING INFORMATION


Ordering	Number	Dookson	Packing	
Lead Free	Halogen Free	Package		
F2970L-S18-T	970L-S18-T F2970G-S18-T		Tube	
F2970L-S18-R	F2970G-S18-R	SOP-18	Tape Reel	

Note: xx: Output Voltage, refer to Marking Information.

www.unisonic.com.tw 1 of 6 QW-R109-035.a


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1	OUT2	Output2			
2	VM	Sense pin of current limiter			
3	VCC	Power supply			
4	WH	OSC input			
5	WL	OSC output			
6	VTH	Variable speed function input			
7	RMI	Lowest speed setting voltage			
8	P-IN	Dricte PWM speed control pin			
9	CPWM	PWM oscillator frenquency setting capacitor			
10	FG	Speed detection output			
11	IN+	The hall sensor input			
12	HB	Power the hall sensor 1.25V			
13	IN-	The hall sensor input			
14	СТ	Setting lock protection time			
15	6VREG	V _{REF} 6V			
16	S-GND	Control system GND			
17	OUT1	Output1			
18	P-GND	Motor system GND			

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING (TA=25°C)

PARAM	SYMBOL	RATINGS	UNIT	
Maximum supply Voltage V _{CC}		V_{CC}	17	V
Maximum supply Voltage VM		VM	17	V
OUT Pin Maximum Output Curr	ent	I _{OUT}	1.2	Α
OUT Pin Output Withstand Volta	age	V_{OUT}	18	V
Maximum Output Current of HB		IHB	10	mA
VTH, RMI Input Pin Withstand \	VTH, RMI	7	V	
P-IN Input Pin Withstand Voltag	V_{P-IN}	V_{CC}	V	
FG Output Pin Output Withstand	V_{FG}	18	V	
FG Output Current	I _{FG}	10	mA	
Allowable Power Dissipation	Specified substrate (Note 1)	P_{D}	0.8	W
Operating Temperature	T _{OPR}	-30~90	°C	
Storage Temperature	T _{STG}	-55~150	°C	

Notes: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

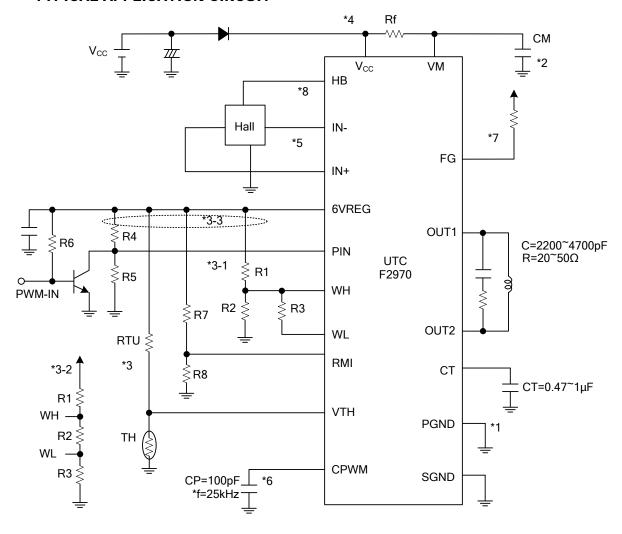
RECOMMENDED OPERATING RANGES (T_A=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
V _{CC} Supply Voltage	V _{CC}	4.5~16	V
VM Supply Voltage	V_{M}	3.5~16	V
VTH, RMI Input Level Voltage Range	VTH, RMI	0~6	V
P-IN Input Level Voltage Range	V_{P-IN}	0~V _{CC}	V
Triangular Wave Input Range	VRM	0.5~4	V
Hall Input Common Phase Input Voltage Range	V _{ICM}	0.2~3	V

ELECTRICAL CHARACTERISTICS (T_A =25°C, V_{CC} =12V, R_f =0 Ω , unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Circuit Current	I _{CC1}	During Drive	12	15	18	mA		
Circuit Current	I _{CC2}	During Lock Protection	11	14	17	mA		
HB Voltage	V_{HB}							
6VREG Voltage	V_{6VREG}	I _{6VREG} =5mA	5.85	5.95	6.10	V		
Pin-CT H Level Voltage	V_{CTH}		3.4	3.6	3.8	V		
Pin-CT L Level Voltage	V_{CTL}		1.4	1.6	1.8	V		
Pin-CT Charge Current	I _{CT1}			2.2		μΑ		
Pin-CT Discharge Current	I _{CT2}			0.22		μΑ		
CT Charge/Discharge Current Ratio	R_{CT}			6.8				
OUT Output L Saturation Voltage	V_{OL}	I _O =200mA		0.1	0.2	V		
OUT Output H Saturation Voltage	V_{OH}	I_0 =200mA, R_f =1 Ω		0.6	0.8	V		
Current Limiter	V_{Rf}			480		mV		
Sensitivity of Hall Input	V_{HN}	Zero Peak Value (Including Offset and Hysteresis)		10	20	mV		
FG Output Pin L Voltage	V_{FG}	I _{FG} =5mA	1	0.2	0.3	V		
FG Output Pin Leak Current	I_{FGL}	V _{FG} =7V	~ 3		30	μA		
Overheat Protection	Overheat Protection THD Design Guarantee Value 180 °C							
Note: 1. Design target value and no	measuremer	(Note 1) Int was made.	50					
UNISONIC TECHNOLOGIES CO., LTD						4 of 6		

Note: 1. Design target value and no measurement was made.


^{1.} Specified substrate: 30mm×30mm×0.8mm, paper phenol.

TRUTH TABLE

VTH	PIN	IN-	IN+	СТ	OUT1	OUT2	FG	Mode
L	L	Н	L		Н	L	L	December Delive
(OPEN)	L	L	Н] ,	L	Н	OFF	Running-Drive
- 11	L	Н	L	L	OFF	L	L	Dunning Degeneration
Н	L	L	Н		L	OFF	OFF	Running-Regeneration
-	Η	Н	L		OFF	L	L	Output Regeneration Mode
-	Η	L	Н	L	L	OFF	OFF	with External Signal
-	-	Н	L	Н	OFF	L	L	Look Drotostion
-	-	L	Н	Н	L	OFF	OFF	Lock Protection

Notes: 1.VTH, P-IN=L means VTH, P-IN<CPWM 2.VTH, P-IN=H means VTH, P-IN>CPWM

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.