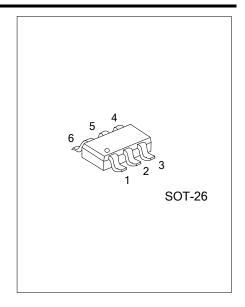
GF4147

Preliminary

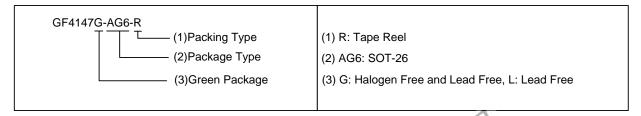

LINEAR INTEGRATED CIRCUIT

GROUND FAULT INTERRUPTER

■ DESCRIPTION

The UTC **GF4147** is a low-power Ground Fault Interrupter controller for detecting hazardous current paths to ground and ground-to-neutral faults. The UTC **GF4147** application circuit opens the load contacts before a harmful shock occurs.

The UTC **GF4147** circuitry has a built-in rectifier and shunt regulator that operates with a low quiescent current. The low- V_{OS} offset-sense amplifier allows direct coupling of the sense coil to the amplifier's feedback signal. This eliminates the large 50/60Hz AC-coupling capacitor.

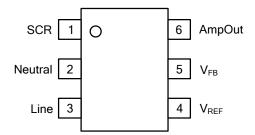


■ FEATURES

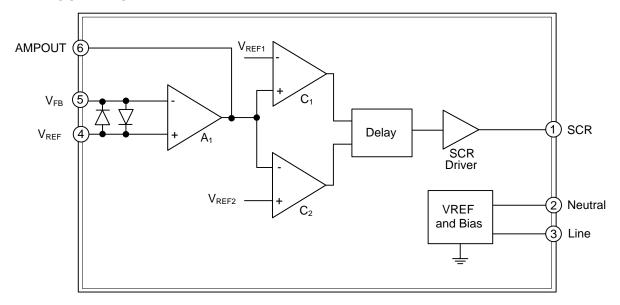
- * For GFCI and RCD Applications
- * Built-in AC Rectifier
- * Built-in Noise Filter
- * Low-Voltage SCR Disable
- * Direct DC Coupled to Sense Coil
- * SCR Gate Driver
- * Adjustable Sensitivity
- * Low Quiescent Current
- * Minimum External Components
- * Meets UL 943 Requirements
- * Ideal for 120V or 220V Systems

■ ORDERING INFORMATION

Ordering	Number	Doolsono	Packing	
Lead Free	Halogen Free	Package		
GF4147L-AG6-R	GF4147G-AG6-R	SOT-26	Tape Reel	


MARKING

<u>www.unisonic.com.tw</u> 1 of 4


■ PIN CONFIGURATION

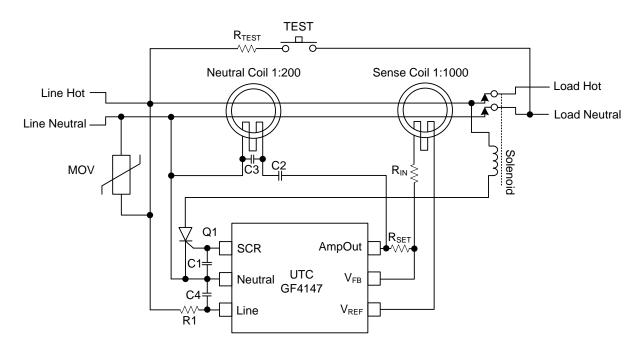
■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION	
1	SCR	Gate drive for external SCR	
2	Neutral	Supply input	
3	Line	Supply input	
4	V_{REF}	Non-inverting input for current-sense amplifier	
5	V_{FB}	Inverting input for current-sense amplifier	
6	AmpOut	current-sense amplifier output	

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Continuous Supply Current, Line to Neutral	Icc	15	mA
Continuous Supply Voltage, Line to Neutral	.,	16	V
Continuous Voltage to Neutral, All Other Pins	V _{CC}	-0.8~15	V
Storage Temperature	T _{STG}	-65~+150	°C


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (I_{LINE} =1.5mA and T_A =25°C, R_{SET} =650k Ω)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Electrical Parameters (T _A =25°C, I _{shunt} =1mA)						
Power Supply Shunt Regulator Voltage	V _{REG}	Line to Neutral	12.2	12.7	13.2	V
		Line to Neutral I _{shunt} =-2mA	-0.9	-0.7		V
Quiescent Current	IQ	Line to Neutral=10V	350	415	480	μΑ
Reference Voltage	V_{REF}	VREF to Neutral	5.8	6.0	6.2	V
Trip Threshold	V_{TH}	AmpOut to VREF	3.4	3.5	3.6	V
Amplifier Offset	Vos	Gain=1000	-450	0	450	μV
Amplifier Positive Voltage Swing	V_{SW+}	AmpOut to VREF, IFAULT=10µA	4.0			V
Amplifier Negative Voltage Swing	V_{SW-}	VREF to AmpOut, I _{FAULT} =-10µA	4.0			V
Amplifier Current Sink	I _{SINK}	AmpOut=V _{REF} - 3V,	400			^
Amplifier Current Sink		V _{FB} =V _{REF} + 100mV				μA
Amplifier Current Source	I _{SRL}	AmpOut=V _{REF} +3V,	400			μΑ
Ampliner Gurrent Gource		V _{FB} =V _{REF} - 100mV				
Delay Filter	t _d	Delay from C₁ trip to SCR L->H	1.3	1.5	1.7	ms
SCR Output Resistance	R _{OUT}	SCR to Neutral=250mV,		0.5	1.0	ΚΩ
SON Output Nesistance		AmpOut=V _{REF}				1/22
		SCR to Neutral AmpOut=V _{REF}		1	10	mV
SCR Output Voltage	V _{OUT}	SCR to Neutral	2.5			V
		AmpOut=V _{REF} +4V	2.0			v
SCR Output Current	Гоит	SCR to Neutral=1V,	350	500		μA
Sort Output Current		AmpOut=V _{REF} + 4V		300		μΛ

■ TYPICAL APPLICATION CIRCUIT

BOM

Reference	Component	Reference	Component
C1	22nF	R _{TEST}	15ΚΩ
C2	10nF	R _{IN}	470Ω
C3	1nF	R _{SET}	511ΚΩ
C4	10nF	R1	91ΚΩ

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.