

UTC UNISONIC TECHNOLOGIES CO., LTD

L1183A

300mA CMOS LDO

DESCRIPTION

The UTC L1183A is a COMS positive linear regulator. One of it's feature is the very low quiescent current typical as low as 30µA and its dropout voltage is extremely low with 300mA output current.

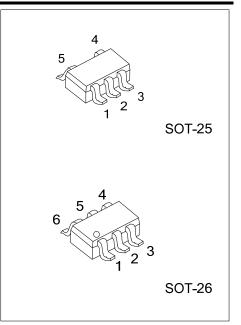
The internal circuit includes current fold-back to prevent device failure when the circuit is operated in the bad conditions.

In application, the UTC L1183A needs a low noise, regulated supply. For stable operation, the output capacitance value should be 2.2µF or more.

The UTC L1183A is an ideal for battery applications, such as instrumentations, portable electronics, wireless devices, cordless phones, PC peripherals, and battery powered widgets.

FEATURES

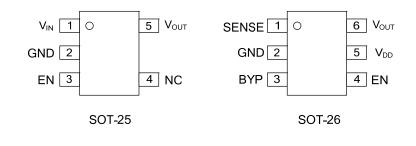
- * Accurate To Within 1.5%
- * Quiescent Current: 30µA
- * With Current Limiting
- * Internal Short Circuit Current Fold-Back
- * Has Power-Saving Shutdown Mode
- * Very Low Temperature Coefficient


ORDERING INFORMATION

Ordering Number	Package	Packing
L1183AG-xx-AF5-R	SOT-25	Tape Reel
L1183AG-xx-AG6-R	SOT-26	Tape Reel

Note: xx: Output Voltage, refer to Marking Information.

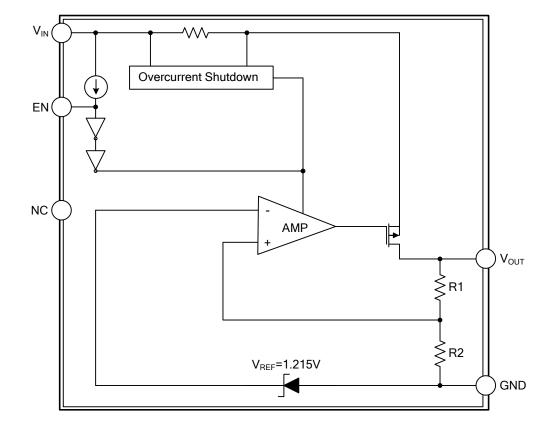
L1183A <u>G-xx-AF5-</u> R	(1) Packing Type	(1) R: Tape Reel
	(2) Package Type	(2) AF5: SOT-25, AG6: SOT-26
	(3) Output Voltage Code	(3) xx: Refer to Marking Information
	(4) Green Package	(4) G: Halogen Free and Lead Free


長期間際若有限公司

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
	12:1.2V 15 :1.5V	
SOT-25	18:1.8V	Voltage Code
25:2.5V 28 :2.8V		
	30: 3.0V 31 :3.1V	
SOT-26	33 :3.3V	Voltage Code
	50:5.0V	

PIN CONFIGURATION



PIN DESCRIPTION

PACKAGE	PIN NO.	PIN NAME	DESCRIPTION
	1	V _{IN}	Input for voltage input. A $1\mu F$ or greater capacitor should be placed in this pin.
	2	GND	Ground.
SOT-25	3	EN	Enable pin. Pulling his pin low, can shut down the PMOS pass transistor, and the current consuming can be set less than 1μ A.
	4	NC	
	5	V _{OUT}	Output voltage pin. The capacitor which connected between this pin and GND should be decoupled with a 2.2μ F or a greater value low ESR ceramic capacitor.
	1	SENSE	Remote Sense.
	2	GND	Ground.
SOT-26 3 BYP			Bypass capacitor for noise reduction.
301-20	4	EN	Enable Input.
	5	V _{DD}	Supply Input.
	6	V _{OUT}	Output Voltage.
			武湖國際着限公司
ITC	JNISONIC	TECHNOLOGI	2 of 6

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (Unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	-0.3~ +6.5	V
Input Voltage (EN,BYP)		-0.3~ +6.5	V
Output Voltage	V _{OUT}	-0.3~ V _{IN} +0.3	V
Output Current	Ι _{Ουτ}	300	mA
Power Dissipation	PD	400	mW

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL RATINGS		UNIT
Ambient Temperature	T _A	- 40 ~ +85	°C
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	280	°C/W
Junction to Case (Note)	θ _{JC}	140	°C/W

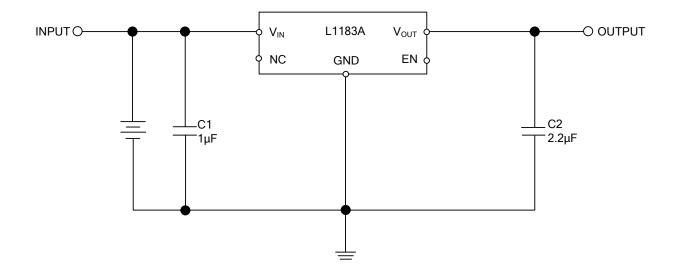
Note: θ_{JC} on center of molding compound if IC has on tab.

■ ELECTRICAL CHARACTERISTICS (T_A = 25°C, Unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input Voltage	V _{IN}			Note1		6.5	V
		V _{IN} =V _{OUT} +1~V _{OUT} +2 I _{OUT} =1mA	1.2V≤V _{OUT} ≤1.4V	-0.2		0.2	%
			1.4V <v<sub>OUT≤2.0V</v<sub>	-0.15		0.15	%
Line Regulation			2.0V <v<sub>OUT<4.0V</v<sub>	-0.1	0.02	0.1	%
	001	V _{IN} =V _{OUT} +1~V _{OUT} +1.5\ I _{OUT} =1mA	/ V _{OUT} =5.0V	-0.1	0.02	0.1	%
Load Regulation	$\frac{\Delta Vout}{Vout}$	I _{OUT} =1mA~300mA		-2	0.2	2	%
Output Voltage Accuracy		I _{OUT} =1mA		-1.5		1.5	%
		I _{OUT} =300mA		-2.5		2.5	%
Quiescent Current	lq	I _{OUT} =0mA			30	50	μA
		Laur=300mA	1.2V≤V _{O(NOM)} ≤2.0V			1300	
Dropout Voltage	V _D	$V_{OUT}=V_{O(NOM)}-2.0\%$	2.4V <v<sub>O(NOM)≤2.8V</v<sub>			400	mV
			2.8V <v<sub>O(NOM)≤5.0V</v<sub>			300	
	PSRR	I _{OUT} =100mA	f=100Hz		60		dB
Power Supply Ripple Rejection		Cour=2 2uF	f=1kHz		50		dB
		-	f=10kHz		20		dB
Output Voltage Noise	eN	I _{OUT} =10mA,C _{OUT} =2.2µ	F,f=10Hz~100kHz		30		μV _{RMS}
Output Current	I _{OUT}	V _{OUT} >1.2V		300			mA
Current Limit	LIMIT	V _{OUT} >1.2V		300	450		mA
Short Circuit Current (Note2)	I _{SC}	V _{OUT} <0.8V			150	300	mA
Ground Pin Current	I _{GND}	I _{OUT} =1mA ~300mA			35		μA
Temperature Coefficient of Output Voltage	$T_{c}V_{0}$				30		ppm/°C
EN Input Threshold	V_{EH}	V _{IN} =2.7V~6.5V		2.0		VIN	V
EN Input Threshold	V _{EL}	V _{IN} =2.7V~6.5V		0		0.4	V
EN Input Bigg Current	I _{EH}	V _{EN} =V _{IN} , V _{IN} =2.7V~6.5V				2.0	μA
EN Input Bias Current	I _{EL}	V _{EN} =0V, V _{IN} =2.7V~6.5V				0.5	μA
Shutdown Supply Current	I _{SD}	V_{IN} =6.5V, V_O =0V, V_{EN} < V_{EL}			0.5	1	μA
Shutdown Output Voltage	V _{SD}	I _O =0.4mA, V _{EN} <v<sub>EL</v<sub>				0.4	V

Notes: 1. V_{IN(MIN)} =V_{OUT} +V_D

2. To prevent the short circuit current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.


Notes: 1. $V_{IN(MIN)} = V_{OUT} + V_D$.

2. To prevent the short circuit current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

树脚襟梢限公司

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

