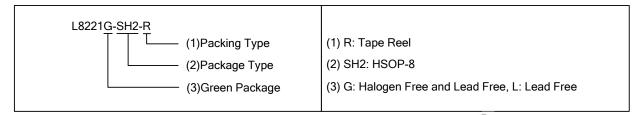
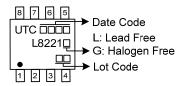

SINGLE LNB-BIAS, CONTROL AND POWER MANAGEMENT SOLUTION

DESCRIPTION

The UTC L8221 is a single chip power management and control solution for LNB's. The highly integrated solution provides all the required FET and mixer bias, control detection and decoding, local oscillator switching and a stable power supply for the IF amplifier and additional support functions. Being at the heart of the LNB monitoring the control, power management and environmental conditions the UTC L8221 is able to provide reliable solution eliminating effects such as false switching and over loading.

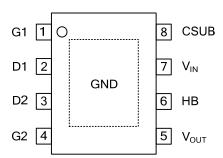


FEATURES

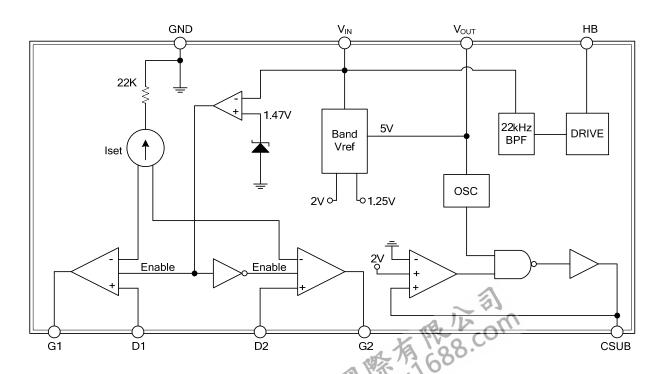

- * Single chip LNB bias, control and power management
- * 22kHz tone detector with signal rejection for band switching
- * Zero Gate FET switching
- * Integrated regulated supply for LNB
- * Voltage detection for polarization switching
- * Programmable mixer and FET bias
- * Single pin for supply and control
- * No external filtering required
- * Temperature compensated protected FET bias

ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
L8221L-SH2-R	L8221G-SH2-R	HSOP-8	Tape Reel	


MARKING

www.unisonic.com.tw 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	G1	To G of fet 1
2	D1	To D of fet 1
3	D2	To D of fet 2
4	G2	To G of fet 2
5	V _{OUT}	5V Output Terminal
6	НВ	To HB osc.
7	V_{IN}	Power Supply (Include both voltage and tone signal)
8	CSUB	Connect an external cap to -2.5V
9	GND	Gnd (connect heat sink to ground)

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

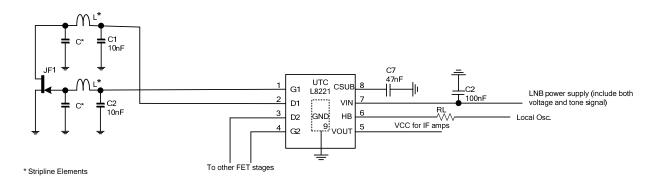
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	-0.6 ~ 25	V
Supply Current	I _{IN}	120	mA
Power Dissipation	P_{D}	1000	mW
Operating Temperature Range	T _{OPR}	-40 ~ +85	Ŝ
Storage Temperature Range	T _{STG}	-40 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS (T_A=25°C, V_{IN}=13V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage Operating Range	V _{IN}		8		22	V
Supply Current						
No Load Supply Current	I _{IN} (no load)	I _{D1} =I _{D2} =0mA		2	3	mA
Max Bias Load Current (Note1)		I _{D1} or I _{D2}			20	mA
Max Osc Load Current (Note 1)		НВ			20	mA
Max Lout Load Current (Note 1)					80	mA
V _{OUT}			-	-	-	
V _{OUT}	V_{OUT}	V_{IN} =10.5V ~ 21V, I_{OUT} =30mA	4.75	5	5.25	V
Substrate Voltage	V	(Internally generated), I _{SUB} =0mA	-3.0	-2.5	-2.0	V
Substrate Voltage	V _{SUB}	I _{SUB} =-20uA			-2.0	V
V _{POL} Threshold	V_{POL}	Applied Via V _{IN}	14.1	14.7	15.4	V
Pol Switching Speed	T_{POL}	V _{IN} (Low)=13V, V _{IN} (High)=18V			1	ms
Output Noise						
Drain Voltage		C _{GATE-GND} =4.7nF, C _{DRAIN-GND} =10nF			0.02	Vpk-pk
Gate Voltage		IC _{GATE-GND} =4.7nF, C _{DRAIN-GND} =10nF			0.005	Vpk-pk
Tone Detector						
Tdetect Threshold	V _{TONE}	Test Circuit	100	170	300	mV
Rejection Freq (Note 2)	F _{TONE}	Test Circuit, V (AC) in=1Vp/p sq.w.	1.0	7.5		kHz
Lo Output Stage	_	,	ı		•	1
HB V _{OUT} Low	V_{HBL}	II=0, Test Circuit , Tone disabled	-0.01	0	0.01	V
HB V _{OUT} High	V_{HBH}	II=20mA, Test Circuit, Tone enabled	4.5		V_{OUT}	V
Gate Characteristics						
G1 Output		,	ı		1	1
Voltage Off	V_{G10}	I _{D1} =0, V _{IN} =14V, I _{G1} =0	-0.05	0	0.05	V
Voltage Low	$V_{\rm G1L}$	I _{D1} <=12mA, V _{IN} =15.5V, I _{G1} =-10uA	-3.0	-2.5	-2.0	V
Voltage High	$V_{\rm G1H}$	I _{D1} =>8mA, V _{IN} =15.5V, I _{G1} =0	0.35	0.5	1.0	V
G2 Output			Г		T	1
Voltage Off	V_{G2O}	I _{D2} =0, V _{IN} =15.5V, I _{G2} =0	-0.05	0	0.05	V
Voltage Low	V_{G2L}	I _{D1} <=12mA, V _{IN} =14V, I _{G2} =-10uA	-3.0	-2.5	-2.0	V
Voltage High	$V_{\rm G2H}$	I _{G2} =>8mA, V _{IN} =14V, I _{G2} =0	0.35	0.5	1.0	V
UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw 3 of 5						
UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw					3 QW-R123-	of 5 -020.B

■ ELECTRICAL CHARACTERISTICS (Cont.)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Drain Characteristics						
D1 Output						
Voltage High	V_{D1}	I _{D1} =10mA, V _{IN} =15.5V	1.8	2.0	2.2	V
Leakage Current	I _{LEAK1}	V _{D1} =0.5, V _{IN} =14V			10	uA
D2 Output						
Voltage High	V_{D2}	I _{D2} =10mA, V _{IN} =14V	1.8	2.0	2.2	V
Leakage Current	I _{LEAK2}	V _{D2} =0.5, V _{IN} =15.5V			10	uA
D1, 2				_	_	
Delta V _D vs. V _{CC}	ΔV_{DV}	V _{CC} =9 ~ 21V		0.5		%/V
Delta V _D vs. T _J	ΔV_{DT}	T _J =-40 ~ +85°C		50		ppm
FET Current Range		I_{D1} , I_{D2}	0		15	mA
Drain Current	I_{D}	I _{D1} , I _{D2} , R _{CALA} =22K	8	10	12	mA
Delta Id vs. V _{CC}	ΔI_{DV}	V _{CC} =9 ~ 21V		0.5		%/V
Delta Id vs. T _J	ΔI_{DT}	T _J =-40 ~ +85°C		0.05		%/°C

Notes: 1. The total combined load currents should not exceed the stated maximum load current.

^{2.} The UTC L8221 series will also reject DiSEqC and other common switching tone bursts.

■ TEST CIRCUIT

The above is partial application circuit for the UTC L8221 series showing all external components required for appropriate biasing. The bias circuits are unconditionally stable over the full temperature range with the associated FETs and gate and drain capacitors in circuit. Capacitors C1 and C2 ensure that residual power supply and substrate generator noise is not allowed to affect other external circuits which may be sensitive to RF interference. They also serve to suppress any potential RF feed through between stages via the UTC L8221 device. These capacitors are required for all stages used. Values of 10nF and 4.7nF respectively are recommended however this is design dependent and any value between 1nF and 100nF could be used.

The capacitor CSUB is an integral part of the UTC **L8221**'s negative supply generator. The negative bias voltage is generated on-chip using an internal oscillator. The required value of capacitor CSUB is 47nF. This generator produces a low current supply of approximately -3 volts. Although this generator is intended purely to bias the external FETs, it can be used to power other external low current circuits via the CSUB pin.

The UTC **L8221** devices have been designed to protect the external FETs form adverse operating conditions. With a JFET connected to any bias circuit, the gate output voltage of the bias circuit can not exceed the range -3.0V~1V under any conditions, including power up and power down transients. Should the negative bias generator be shorted or overloaded so that the drain current of the external FETs can no longer be controlled, the drain supply to FETs is shut down to avoid damage to the FETs by excessive drain current. The UTC **L8221** incorporates over and under voltage protection so is the receiver or installation develops a fault the LNB will shut down and restart once operating conditions are back to normal.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.