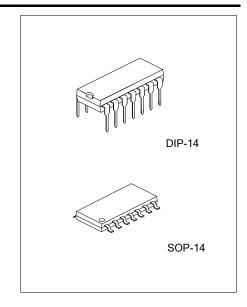
UNISONIC TECHNOLOGIES CO., LTD

LL204

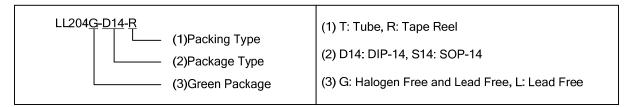

LINEAR INTEGRATED CIRCUIT

DUAL OUTPUT FLASHER

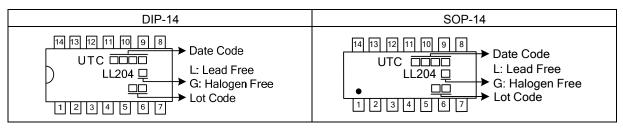
DESCRIPTION

The UTC **LL204** is a dual output stages flasher designed as a relay driver for flashing light control in automotive applications. Both sides direction indicator input with only a small control current makes switch contacts for small loads possible. Each side of the vehicle is controlled separately.

The construction of the hazard switch could be simplified due to hazard warning input is separate. The flasher will dramatically increase the flash frequency by a typical ratio of 2:1 if lamp fault is detected. The UTC **LL204** can be directly connected to the battery due to extreme low current consumption.

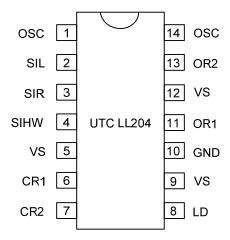


■ FEATURES


- * Temperature and supply voltage compensated flashing frequency
- * Frequency doubling indicates lamp fault.
- * Two relay driver outputs with high current-carrying capacity and low saturation voltage
- * Minimum lamp load for flasher operation: ≥ 1W
- * Very low sensitivity to EMI
- * Extremely low current consumption<10µA (at switches open)
- * Reverse polarity protection
- * Three control inputs: left, right and hazard warning

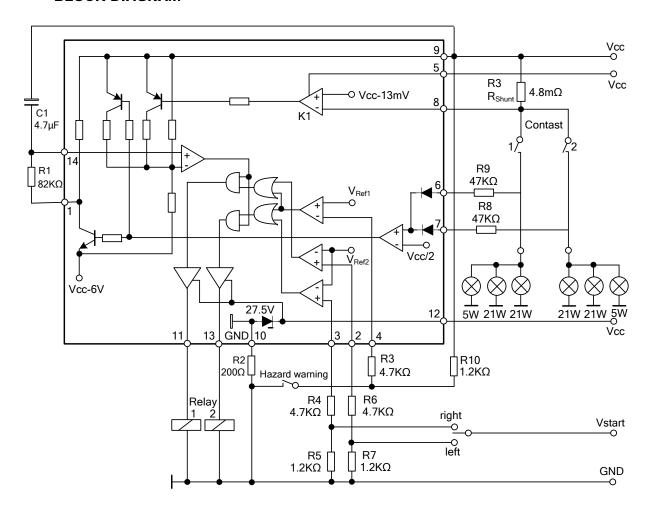
■ ORDERING INFORMATION

Ordering Number		Package	Dooking	
Lead Free	Lead Free Halogen Free		Packing	
LL204L-D14-R	LL204L-D14-R LL204G-D14-R		Tube	
LL204L-S14-R	LL204G-S14-R	SOP-14	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN No.	PIN NAME	FUNCTION
1	OSC	Oscillator
2	SIL	Start input left
3	SIR	Start input right
4	SIHW	Start input hazard warning
5	VS	Vcc
6	CR1	Control input relay 1
7	CR2	Control input relay 2
8	LD	Lamp failure detection
9	VS	Vcc
10	GND	Ground
11	OR1	Output relay 1
12	VS	V _{CC}
13	OR2	Output relay 2
14	osc	Oscillator

■ BLOCK DIAGRAM

Pin 8, Lamp outage detection

The lamp current is monitored via an external shunt resistor R_3 and an internal comparator K_1 with its reference voltage of typ. 13 mV (V_{SS} = 12V). The outage of one lamp out of two lamps is detected according to the following calculation:

Nominal current of 1 lamp: 21W / ($V_{SS} = 12V$): $I_{lamp} = 1.75A$

Nominal current of 2 lamps: $2 \times 21W / (V_{SS} = 12V)$: $I_{lamp} = 3.5A$.

The detection threshold is recommended to be set in the middle of the current range: loutage ≈ 2.7A.

Thus the shunt resistor is calculated as:

 $R_3 = V_T (K1) / I_{outage}$

 $R_3 = 13 \text{mV}/2.7 \text{A} = 4.8 \text{m}\Omega$.

Comparator K1's reference voltage is matched to the characteristics of filament lamps (see "control signal threshold" in the data part).

The combination of shunt resistor and resistance of wire harness prevents Pin 8 from a too high voltage in case of shorted lamps.

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage, 1 min, pins 5, 9 and 12	V_{CC}	24	٧
Junction Temperature	T_J	+150	°C
Operating Temperature	T _{OPR}	-20 ~ +85	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
The annual Desistance I have the at Ameliant	DIP-14	0	90	°C/\\/	
Thermal Resistance Junction to Ambient	SOP-14	θJA	120	°C/W	ĺ

■ **ELECTRICAL CHARACTERISTICS** (V_{CC} = 12V, T_A =25°C, unless otherwise specified.)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage Range		Vcc	Pins 5, 9, 12	8		18	V
Saturation Voltage	V _{CC} =8V V _{CC} =12V	V _{OUT}	R _L =82Ω			1.0	V
Clamping Voltage		V ₁₂	T _A = -20°C ~ 85°C	25.0	27.5	30.0	V
Relay output overvoltage detection (relay disabled)		V ₁₂	T _A = -20°C ~ 85°C	18	20	22	V
		Vcc	V _{CC} =9V		11		mV
Control signal threshold			V _{CC} =13.5V		13		mV
			V _{CC} =16V		15		mV
Output current for relay driver		I _{OUT}	Pins 11, 13			300	mA
Relay output reverse current		I _{OUT}	Pins 11, 13			0.1	mA
Supply current, switches open		I _{CC}	Pins 5, 9, 12			10	μΑ
Relay coil resistance		R_L					Ω
Start delay		t _{ON}	First bright phase			10	ms
Tolerance of control signal threshold			V _{CC} =9V~16V, Pin 8, T _A = -20°C ~ 85°C	-6		+6	%
Temperature coefficient of control signal Threshold		T _C V _O	V _{CC} =13.5V, Pin 8		10		μV/K

■ **TOLERANCES** (V_{CC} = 12V, T_A =25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Frequency determining resistor	R₁		6.8		510	kΩ
Frequency determining capacitor	C ₁				47	μF
Frequency tolerance	/\I4	Normal flashing, basic frequency f ₁ excluding the tolerance of R ₁ and C ₁	-5		+5	%
Dright period	$\triangle f_1$	Basic frequency f ₁	47		53	%
Bright period	$\triangle f_2$	Control frequency f ₂	35		43	70
Frequency increase	f_2	Lamp failure	2.15×f ₁		2.3×f ₁	Hz
Lamp load	P_{L}		1			W

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

