UNISONIC TECHNOLOGIES CO., LTD

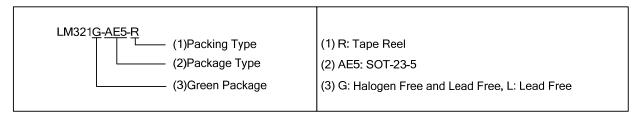
LM321

LINEAR INTEGRATED CIRCUIT

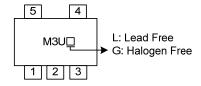
LOW POWER SINGLE OP AMP

DESCRIPTION

The UTC LM321's quiescent current is only 430µA (5V). The UTC LM321 brings performance and economy to low power systems, With a high unity gain frequency and a specified 0.4V/µs slew rate. The input common mode range includes ground and therefore the device is able to operate in single supply applications as well as in dual supply applications. It is also capable of comfortably driving large capacitive loads.

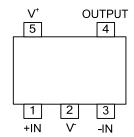

SOT-23-5 (JEDEC TO-236)

FEATURES


- * Low supply current 430µA
- * V_{CC}=5V, T_A=25°C. Typical values unless specified.
- * Gain-Bandwidth product 1MHz
- * Low input bias current 45nA
- * Wide supply voltage range +3V~+32V
- * Stable with high capacitive loads

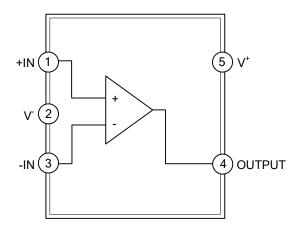
ORDERING INFORMATION

Ordering Number		Package	Packing	
Lead Free	Lead Free Halogen Free			
LM321L-AE5-R	LM321G-AE5-R	SOT-23-5	Tape Reel	



MARKING

Cwww.flying1688.com www.unisonic.com.tw 1 of 7 QW-R104-007.E


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	+IN	Non-inverting input
2	V	Ground
3	-IN	inverting input
4	OUTPUT	Output
5	V ⁺	Power supply

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage (V ⁺ - V ⁻)	V _{CC}	32	V
Differential Input Voltage	$V_{I(DIFF)}$	±Supply Voltage	V
Input Voltage	V_{IN}	-0.3~+32	V
Input Current (V _{IN} <-0.3V) (Note 2)		50	mA
Output Short Circuit to GND, V ⁺ ≤15V and T _A =25°C (Note 3)		Continuous	
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65~+150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.36V (at 25°C).
 - 3. Short circuits from the output V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground the maximum output current is approximately 40mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short circuits can exceed the power dissipation ratings and cause eventual destruction.

■ OPERATING RATINGS

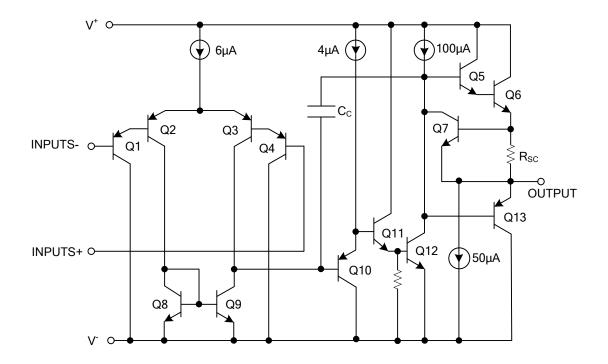
PARAMETER	SYMBOL	RATINGS	UNIT
Temperature Range	T _A	-40~85	°C
Supply Voltage	V ⁺	3~30	V

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	265	°C/W

ELECTRICAL CHARACTERISTICS

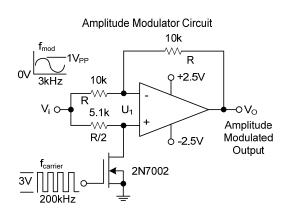
(Unless otherwise specified, all limits guaranteed for T_A=25°C, V⁺=5V, V⁻=0V, V_O=1.4V.)

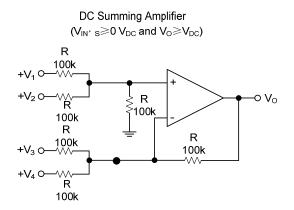

9	т то туп туп то туп туп то туп	<i>J</i> ,			
SYMBOL	TEST CONDITIONS	MIN (Note 1)	TYP	MAX (Note 1)	UNIT
Vos	(Note 3)	(INOIC I)	2	7	mV
	(45	250	nA
			5	50	nA
V _{CM}	V ⁺ =30V (Note 5) For CMRR>=50dB	0	-	V ⁺ -1.5	V
A _V	$(V^{\dagger}=15V, R_{L}=2k\Omega V_{O}=1.4V\sim11.4V)$	25 15	100		V/mV V/mV
PSRR	R _S ≤10kΩ, V ⁺ ≤5V~30V	65	100		dB
CMRR	R _S ≤10kΩ	65	85		dB
\/	$V^{+}=30V$, $R_{L}=2k\Omega$	26			V
VOH	$V^{+}=30V$, $R_L=10k\Omega$	27	28		V
V _{OL}	$V^{+}=5V$, $R_L=10k\Omega$		5	20	mV
Is	V ⁺ =5V		0.430	1.15	mA
	V ⁺ =30V		0.660	2.85	mA
I _{SOURCE}	V_{ID} =+1V, V ⁺ =15V, V_{O} =2V	20	40		mA
leinik	V_{ID} =-1V, V ⁺ =15V, V _O =2V	10	20		mA
JOHNY	V _{ID} =-1V, V ⁺ =15V, V _O =0.2V 12 100		100		μΑ
Io	V ⁺ =15V		40	85	mA
SR	V^{\dagger} =15V, R _L =2k Ω , V _{IN} =0.5~3V, C _L =100pF, Unity Gain		0.4		V/µs
GBW	$V^{+}=30V$, $f=100kHz$, $V_{IN}=10mV$, $R_{L}=2k\Omega$, $C_{L}=100pF$			MHz	
φm			60		deg
THD	f=1kHz, A_V =20dB, R_L =2k Ω , V_O =2 V_{PP} , C_L =100pF, V^+ =30 V	_	0.015		%
e _n	f=1kHz, R _S =100Ω, V ⁺ =30V		40		nV √Hz
	SYMBOL Vos IB Ios VcM Av PSRR CMRR Voh Vol Is Isource Isink Io SR GBW фm THD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Notes: 1. All limits are specified by testing or statistical analysis.

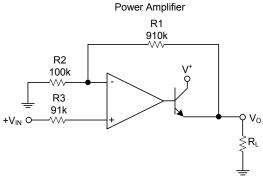
- 2. Typical values represent the most likely parametric norm.
- 3. $V_0 \cong 1.4V$, $R_S = 0\Omega$ with V^+ from 5V to 30V; and over the full input common-mode range (0V~V⁺-1.5V) at 25°C.
- 4. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- 5. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V⁺-1.5V at 25°C, but either or both inputs can go to +32V without damage, independent of the magnitude of V⁺.
- Short circuits from the output V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground the maximum output current is approximately 40mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short circuits can exceed the power WWW.Hying 1688.com dissipation ratings and cause eventual destruction.

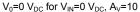

SIMPLIFIED SCHEMATIC

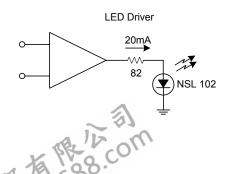


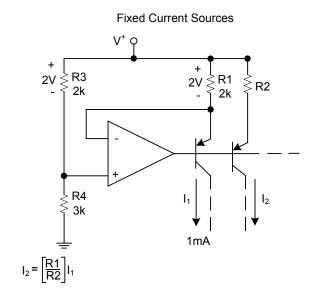

■ TYPICAL APPLICATION CIRCUIT

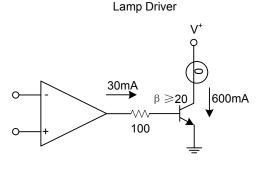
Non-Inverting DC Gain (0V Input = 0V Output)




* R NOT NEEDED DUE TO TEMPERATURE INDEPENDENT $I_{\rm IN}$




Where: $V_0=V_1+V_2-V_3-V_4$, $(V_1+V_2) \ge (V_3+V_4)$ to keep $V_0>0$ V_{DC}



■ TYPICAL APPLICATION CIRCUIT(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.