UNISONIC TECHNOLOGIES CO., LTD

LR1811 **Advance CMOS IC**

1A FAST ULTRA LOW DROPOUT LINEAR REGULATOR

DESCRIPTION

The UTC LR1811 operate from a +1.5V~+6V input supply as fast ultra low-dropout linear regulators. Wide output voltage range options are available. The fast response characteristic to make UTC LR1811 suitable for low voltage microprocessor application. The low quiescent current operation and low dropout quality caused by the CMOS process.

The UTC LR1811 has low dropout voltage. The ground pin current is typically 80µA.

Output Voltage Precision: Multiple output voltage options are available and ranging from 1.2V~5.0V at room temperature with a guaranteed accuracy of ±1.5%, and ±3.0% when varying line and

The output voltage types of UTC LR1811 are fixed one in the IC.

(3)Output Voltage

(4)Green Package

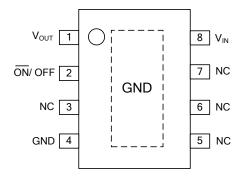
FEATURES

- * Low Dropout Voltage
- * The Guaranteed Output Current is 1A DC
- * Output Voltage Accuracy ± 1.5%
- * Over temperature Protection And Over current Protection

ORDERING INFORMATION

Ordering Number	Package	Packing		
LR1811G-xx-SH2-R	HSOP-8	Tape Reel		
Note: xx: Output Voltage, refer to Marking Information				
LR1811G-xx-SH2-R				
TTTL (1)Packing Type	(1) R: Tape Reel			
(2)Package Type	(2) SH2: HSOP-8			

(3) xx: Refer to Marking Information


(4) G: Halogen Free and Lead Free

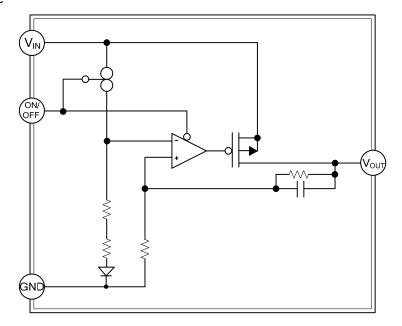
www.unisonic.com.tw 1 of 6 QW-R125-039.a

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
HSOP-8	12: 1.2V 15 : 1.5V 18: 1.8V 25: 2.5V 30: 3.0V 33: 3.3V 50: 5.0V	8 7 6 5 UTC

■ PIN CONFIGURATION

■ PIN DESCRIPTION


PIN NO.	PIN NAME	PIN DESCRIPTION
1	V_{OUT}	Output voltage
2	ON/OFF	ON/OFF select pin, when connected to the ground the chip in operating normally.
3, 5,6,7	NC	No connection
4	GND	GND
8	V_{IN}	Input voltage

Note: The NC pin is electrically open.

The NC pin can be connected to V_{IN} or GND.

■ BLOCK DIAGRAM

Fixed Output Voltage

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	7	V
Shutdown Input Voltage	V _{IN(SHDN)}	-0.3~V _{IN}	V
Maximum Operating Current (DC)		1	Α
Power Dissipation (Note 3)	P _D	Internally Limited	
Junction Temperature	T_J	+125	°C
Storage Temperature	T _{STG}	-65~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	143	°C/W
Junction to Case	θ_{JC}	45	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified.)

	Т	1					
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input Voltage	V_{IN}			1.5		6	V
Output Voltage (Note 3)	V _{OUT(E)}	V _{IN} =V _{OUT(S)} +1V I _{OUT} =100mA	1.0V≤V _{OUT(S)} <1.5V	V _{OUT(S)} - 0.015	V _{OUT(S)}	V _{OUT(S)} + 0.015	V
output voltage (Note o)			1.5V≤V _{OUT(S)} ≤3.5V	V _{OUT(S)} x 0.99	V _{OUT(S)}	V _{OUT(S)} x 1.01	V
Output Voltage Line Regulation	$\triangle V_{OUT1}/$ ($\triangle V_{IN} \times V_{OUT}$)	V _{OUT(S)} +0.5V≤V _{IN}	_I ≤5.5V,I _{OUT} =100mA		0.05	0.2	%/V
Output Voltage Load Regulation	$\triangle V_{\text{OUT2}}$	V _{IN} =V _{OUT(S)} +1V,1	ImA≤I _{OUT} ≤300mA	-20	-3	20	mV
			1.2V≤V _{OUT(S)} <1.5V		0.34	0.38	
		I _{OUT} =300mA	1.5V≤V _{OUT(S)} <2.6V		0.10	0.15	
			2.6V≤V _{OUT(S)} ≤5.0V		0.07	0.10	
Dropout Voltage(Note 4)	V_{drop}		1.2V≤V _{OUT(S)} <1.5V		0.70		٧
		I _{OUT} =1000mA	1.5V≤V _{OUT(S)} <2.0V		0.40		
		IOUT- TOOUTIA	2.0V≤V _{OUT(S)} <2.6V		0.32		
			2.6V≤V _{OUT(S)} ≤5.0V		0.23		
Output Current(Note 5)	I _{OUT}	V _{IN} ≥V _{OUT(S)} +1V		1000 (Note 7)			mA
Ground Pin Current In Normal Operation Mode	I _{SS1}	V _{IN} =V _{OUT(S)} +1V, Load	ON/OFF pin=ON, No	50	80	120	μΑ
Ground Pin Current In Power-off Mode	I _{SS2}	V _{IN} =V _{OUT(S)} +1V, No Load	ON/OFF pin=OFF,		0.1	1.0	μA
Short Circuit Current	I _{SC}	$V_{IN}=V_{OUT(S)}+1V$, $V_{OUT}=0V$	ON/OFF pin=ON,		2		Α
Output Voltage Temperature Coefficient(Note 6)	$\triangle V_{OUT}/$ ($\triangle T_A \times V_{OUT}$)	$V_{IN}=V_{OUT(S)}+1V,I_{OUT(S)}+1V$ -40°C $\leq T_A \leq +85$ °			±100		ppm/°C
ON/OFF Pin Input Voltage "H"	V_{SH}	$V_{IN}=V_{OUT(S)}+1V$,		1.5			V
ON/OFF Pin Input Voltage "L"	V_{SL}		V _{OUT} output level)	0.3	V
ON/OFF Pin Input Current "H"	I _{SH}	$V_{IN}=V_{OUT(S)}+1V,V$	/ _{ON/OFF} =5.5V	-0.1		0.1	μA
ON/OFF Pin Input Current "L"	I _{SL}	$V_{IN}=V_{OUT(S)}+1V,V$	/ _{ON/OFF} =0V	-0.1		0.1	μA
剧剧剧							
UNISONIC TECH	INOLOGIES	CO. LTD					4 of 6

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Ripple Rejection	RR	$V_{IN}=V_{OUT(S)}+1V$, f=1khz, $\triangle V_{rip}=0.5Vrms$, $I_{OUT}=100mA$	1.2V≤V _{OUT(S)} <3.0V		65		dB
			3.0V≤V _{OUT(S)} ≤3.5V		60		
			3.5V≤V _{OUT(S)} ≤5.0V		55		
Thermal Shutdown detection temperature	T _{SD}	Junction temperature			150		°C
Thermal Shutdown release temperature	T _{SR}	Junction temperature			120		°C

Notes: 1. The UTC **LR1811** output must be diode-clamped to ground. If used in a dual-supply system where the regulator load is returned to a negative supply.

- 2. Devices must be derated based on package thermal resistance at elevated temperatures.
- 3. V_{OUT(S)}: Specified output voltage

V_{OUT(E)}: Actual output voltage

Output voltage when fixing I_{OUT}(=100mA) and inputting V_{OUT(S)}+1.0V

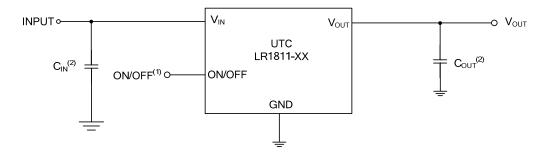
4. Vdrop=V_{IN1}-(V_{OUT3}×0.98)

 V_{OUT3} is the output voltage when $V_{IN}=V_{OUT(S)}+1.0V$ and $I_{OUT}=300$ mA, 1000mA.

- 5. The output current at which the output voltage becomes 95% of V_{OUT(E)} after gradually increasing the output current.
- 6. The change in temperature [mV/°C] is calculated using the following equation.

$$\frac{\Delta V_{OUT}}{\Delta T_{A}} \Big[mV / ^{\circ}C \Big] = V_{OUT(S)} \Big[V \Big] \times \frac{\Delta V_{OUT}}{\Delta T_{A} \times V_{OUT}} \Big[ppm / ^{\circ}C \Big] \div 1000$$

7. The output current can be at least this value.


Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the power dissipation of the package when the output current is large.

This specification is guaranteed by design.

■ TYPICAL APPLICATION CIRCUIT

Fixed Output Voltage

- (1) ON/OFF pins must be pulled high through a $10k\Omega$ pull-up resistor.
- (2) Generally a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under the actual usage conditions for selection, including evaluation of temperature characteristics.

Input capacitor (C_{IN}): 2.2 μ F or more Output capacitor (C_{L}): 2.2 μ F or more

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.