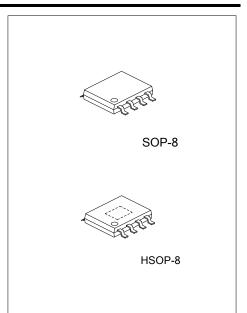


LR7XXYY Advance **CMOS IC**

LOW NOISE DUAL 300mA LDO


DESCRIPTION

The UTC LR7XXYY series are highly accurate, Dual, low noise, CMOS LDO voltage regulators. Performance features of the series includes low output noise, high ripple rejection ratio, low dropout and very fast turn-on times.

The UTC LR7XXYY includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensators internally. The LR7XXYY current limiters' foldback circuit also operates as a short protect for the output current limiter.

The UTC LR7XXYY series is also fully compatible with low ESR ceramic capacitors, reducing cost and improving output stability.

This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies. The EN function allows the output of each regulator to be turned off independently, resulting in greatly reduced power consumption. The output voltage of these ICs is internally fixed with high accuracy (1%).

FEATURES

* Supply Current Typ. 25µA (each channel) * Standby Current Typ. 0.1µA (each channel)

* Dropout Voltage Typ. 0.21V (I_{OUT} =300mA, V_{OUT} =2.8V)

Typ. 0.24V (I_{OUT}=300mA, V_{OUT}=2.5V)

* Ripple Rejection Typ. 80dB (f=1kHz)

* Temperature-Drift Coefficient of Output Voltage Typ. ±30ppm/°C

* Line Regulation Typ. 0.02%/V * Output Voltage Accuracy ±1.0%

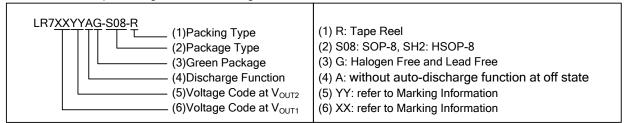
* Input Voltage Range 2.5V~5.25V

1.5V ~3.3V (0.1V steps) * Output Voltage Range

(For details, please refer to MARK

INFORMATIONS.)

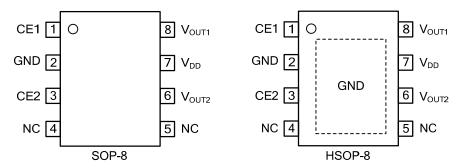
* Built-in Fold Back Protection Circuit Typ. 50mA * Built-in Auto Discharge Function **B** Version



■ ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
LR7XXYYAL-S08-R	LR7XXYYAG-S08-R	SOP-8	Tape Reel	
LR7XXYYAL-SH2-R	LR7XXYYAG-SH2-R	HSOP-8	Tape Reel	

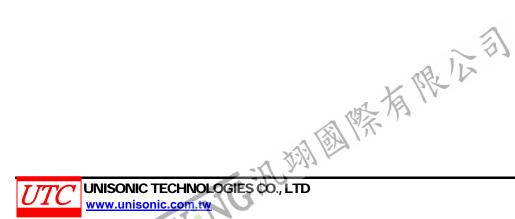
Advance


Note: XXYY: Output Voltage, refer to Marking Information.

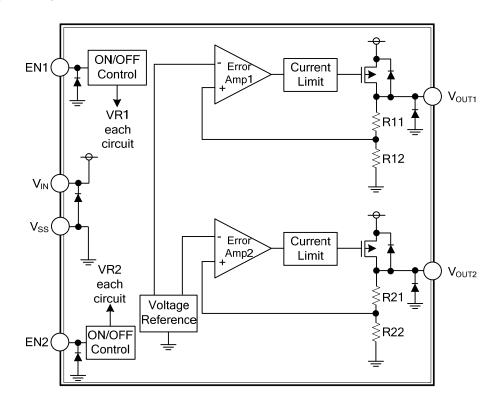
■ MARKING INFORMATIONS

PACKAGE	VOLTAGE CODE		MARKING		
PACKAGE	XX	YY	8 7 6 5		
SOP-8	18: 1.8V	25: 2.5V	Voltage Code at V _{OUT2} UTC □□□□ Date Code L: Lead Free Voltage Code at V _{OUT1} G: Halogen Free		
	18: 1.8V	33: 3.3V	Voltage code at Voun ↓ ↓ Lot Code ↓ ↓ ↓ ↓ Lot Code ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		

■ PIN CONFIGURATION



■ PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION				
1	CE1	Chip Enable Pin 1				
2	GND	Ground Pin				
3	CE2	Chip Enable Pin 2				
4	NC	No Connection				
5	NC	No Connection				
6	V_{OUT2}	Output Pin 2				
7	V_{DD}	Input Pin				
8	V_{OUT1}	Output Pin 1				

Notes: 1. Tab is GND level. (They are connected to the reverse side of this IC.)

2. The tab is better to be connected to the GND, but leaving it open is also acceptable.

■ BLOCK DIAGRAM

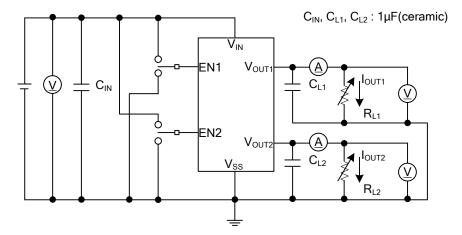
ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	6.0	V
Input Voltage (CE Pin)	V_{CE}	6.0	V
Output Voltage	V_{OUT}	-0.3 ~ V _{IN} +0.3	V
Output Current 1	I _{OUT1}	400	mA
Output Current 2	I _{OUT2}	400	mA
Power Dissipation	P _D	880	mW
Operating Temperature Range	T_{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-55 ~ +125	°C

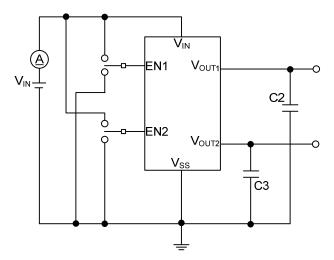
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

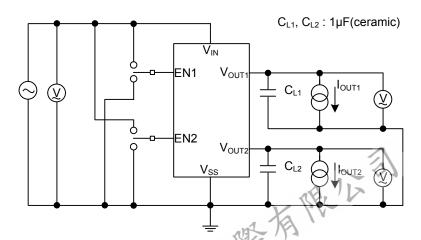
ELECTRICAL CHARACTERISTICS

(T_{OPT}=25°C, V_{IN}=Set V_{OUT}+ 1V for higher output of the regulator pair, I_{OUT}=1mA, C_{IN}=C_{OUT} =1μF, unless otherwise noted)

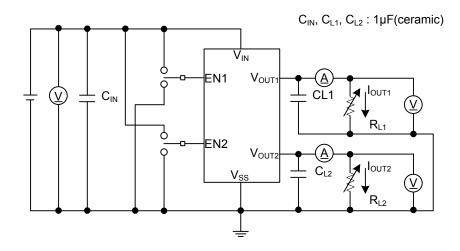

VR1/VR

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	V _{IN} =Set V _{OUT} +1V,	V _{OUT} >2.0V	×0.99		×1.01	V
		I _{OUT} =1mA	V _{OUT} ≤ 2.0V	-20		+20	mV
Output Current	I _{OUT}			300			mA
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	1mA ≤ I _{OUT} ≤ 200mA			20	40	mV
Dropout Voltage	V_{DIF}	I _{OUT} =300mA	1.5V≤Set V _{OUT} <1.7V		0.40	1.00	V
			1.7V≤Set V _{OUT} <2.0V		0.34	0.80	
			2.0V≤Set V _{OUT} <2.5V		0.29	0.50	
			2.5V≤Set V _{OUT} <2.8V		0.24	0.38	
			2.8V≤Set V _{OUT} ≤ 3.3V		0.21	0.34	
Supply Current	I _{SS}	I _{OUT} =0V			25	33	μΑ
Standby Current	Istandby	V _{CE} =0V			0.1	3.0	μΑ
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	Set $V_{OUT}+0.5V \le V_{IN} \le 5.0V$ (In case that $V_{OUT} \le 2.0V$, $2.5V \le V_{IN} \le 5.0$)			0.02	0.10	%/V
Ripple Rejection	RR	f=1kHz, Ripple 0.2Vp-p, V_{IN} =Set V_{OUT} +1V, I_{OUT} =30mA (In case that V_{OUT} ≤2.0V, V_{IN} =3V)			80		dB
Input Voltage (Note 1)	V _{IN}			2.5		5.25	V
Output Voltage Temperature Coefficient		-40°C ≤T _{OPT} ≤ 85°0	С		±30		ppm/°C
Short Current Limit	I _{sc}	V _{OUT} =0V			50		mA
CE Pull-Down Current	I _{PD}			0.05	0.3	0.6	μA
CE Input Voltage "H"	V_{CEH}			1.5		6.0	V
CE Input Voltage "L"	V_{CEL}					0.3	V
Output Noise	en	BW=10Hz~100kH;	<u></u>		30		μVrms
Low Output Nch Tr. ON Resistance (B version)	R _{LOW}	V _{IN} =4.0, V _{CE} =0V			30		Ω


Note: The maximum Input Voltage of the ELECTRICAL CHARACTERISTICS is 5.25V. In case of exceeding this specification, the IC must be operated on condition that the Input Voltage is up to 5.5V and the total operating Jan 1991 time is within 500hrs.


■ TEST CIRCUIT

Standard Test Circuit



Supply Current Test Circuit

Test Circuit for Ripple Rejection

■ TYPICAL APPLICATION CIRCUIT(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.