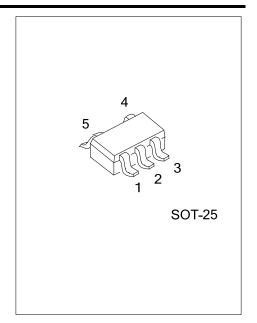
LR9107 Preliminary CMOS IC


OUTPUT CAPACITOR-LESS LOW VOLTAGE 200mA LDO REGULATOR

■ DESCRIPTION

The UTC **LR9107** is a CMOS-based low dropout regulator with high output voltage accuracy, low dropout, high PSRR and low quiescent current.

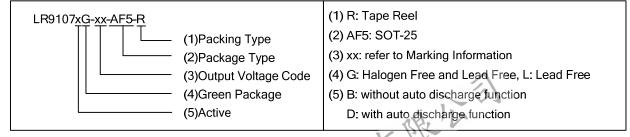
The UTC **LR9107** includes a voltage reference unit, an error amplifier, current limit circuit, resistors for setting output voltage, and a chip enable circuit. With its low power consumption, excellent line and load transient response, the UTC **LR9107** is well suited for low power handheld communication equipment.

Since the output capacitor and noise bypass capacitor are able to be reduced, high density mounting on boards are possible.

■ FEATURES

- * Quiescent current: Typ. 9.5µA
- * Low V_{IN} and wide V_{IN} range: 1.4V~5.25V
- * Guarantee output current: 200mA
- * VOUT accuracy: ±1%
- * Ripple Rejection: Typ. 70dB (f=1kHz,V_{OUT}≤1.2V)

Typ. 65dB (f=1kHz, 1.2V<V_{OUT}<2.2V)

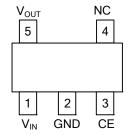

Typ. 60dB (f=1kHz, V_{OUT}≥2.2V)

- * Temperature-drift coefficient of output voltage: Typ. ±100ppm/°C
- * Low output noise: 60uVrms (10Hz~100kHz)
- * Quiescent current: 35µA

ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
LR9107xL-xx-AF5-R	LR9107xG-xx-AF5-R	SOT-25	Tape Reel	

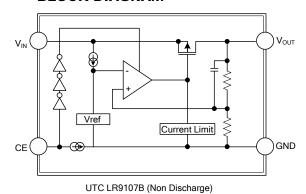
Note: xx: Output Voltage, refer to Marking Information.

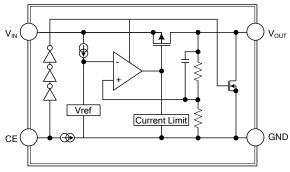


www.unisonic.com.tw 1 of 5

■ MARKING

PACKAGE	VOLTAGE CODE	MARKING		
SOT-25	18: 1.8V 28: 2.8V	Active Code R7XXX Voltage Code 1 2 3		


■ PIN CONFIGURATION



■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{IN}	Power Input Pin
2	GND	Ground
3	CE	Enable Pin. This pin should not be floating. Driving this pin "1" enables the regulator, while "0" shutdown the regulator.
4	NC	No Connection
5	V_{OUT}	Power Output Pin

■ BLOCK DIAGRAM

UTC LR9107D (With Discharge)

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified.)

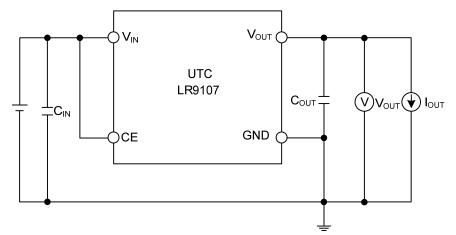
PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	6.0	V
Input Voltage CE	V_{CE}	6.0	V
Output Voltage	V_{OUT}	$-0.3 \sim V_{IN} + 0.3$	V
Output Current	I _{OUT}	300	mA
Power Dissipation	P_D	380	mW
Operating Temperature	T _A	-40 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

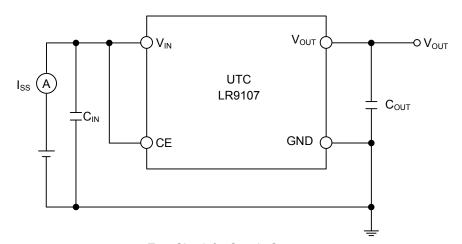
■ **RECOMMENDED OPERATING CONDITIONS** (T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	1.7 ~ 5.25	V
Output Current	l _{out}	0 ~ 150	mA
Operating Ambient Temperature	T _A	-40 ~ +85	°C

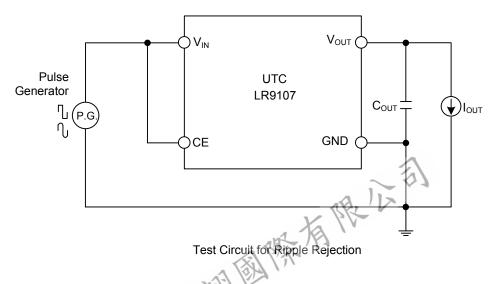
■ ELECTRICAL CHARACTERISTICS

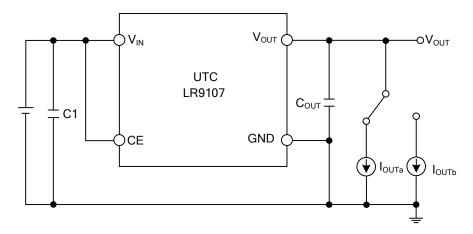

(V_{CE}=V_{IN}=V_{OUT}+1.0V, C_{IN}=C_{OUT} 0.47μF, I_{OUT}=1.0mA, T_A=25°C, unless otherwise specified)

(VCE-VIN-VOUT+1.0V, CIN-COUT 0.41	μι , ιουι-	i.omA, iA-25 O, unices ouici	wisc specifica)				, , ,	
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Input Voltage	V_{IN}	T _A =-40°C~+85°C				5.25	V	
Output Voltage Accuracy (Note 6)	V _{oc}	$V_{IN} = (V_{OUT-NOM} + 1.0V) \sim 5.25V,$	T _A =+25°C	-1		+1	%	
		I _{OUT} =1mA~200mA	T _A =-40°C~+85°C	-1.5		+1.5	5 70	
Line Regulation (dV _{OUT} /dV _{IN} /V _{OUT})	ΔV _{OUT} /ΔV _{IN}	V _{IN} =(V _{OUT-NOM} +1.0V)~5.25V, I _{OUT} =1.0mA			0.02	0.1	%/V	
Load Regulation (dV _{OUT} /V _{OUT} /dl _{OUT})	ΔУонт	V _{IN} =V _{OUT-NOM} +1.0V, I _{OUT} =1mA~200mA			0.5	1.0	%/A	
Quiescent Current (Note 2)	I_{Q}	I _{OUT} =0mA			9.5	25	μΑ	
I _{STANDBY}	I _{STANDBY}	V _{CE} =0V (Disabled)			0.1	3.0	μΑ	
Output Current	I _{OUT}			200			mA	
Fold-Back Short Current (Note 3)	I _{SC}	V _{OUT} short to ground			50		mΑ	
		V _{OUT} ≤1.2V	f=1kHz		70			
Ripple Rejection (Note 4)	RR	1.2V <v<sub>OUT<2.2V</v<sub>	$V_{IN}=[V_{OUT}+1V],$		65		dB	
		V _{o∪T} ≥2.2V	I _{OUT} =30mA		60			
	V _{DROP}	I _{OUT} =200mA	1.5V≤V _{OUT} <2.0V		0.44			
Dropout Voltage (Note 1)			2.0V≤V _{OUT} <2.6V		0.35		V	
			2.6≤V _{OUT}		0.27			
Output Voltage Temperature Coefficient	$\frac{\Delta V_{OUT}}{\Delta T}$	I _{OUT} =30mA, T _A =-40°C~+85°C			±100		ppm/ °C	
CE Pull-Down Current	I_{PD}				0.1		μΑ	
CE Input Low Voltage	V_{CEL}					0.4	V	
CE Input High Voltage	V _{CEH}			1.0			V	
On Resistance of N-channel for Auto-Discharge (Note 5)	R _{ON}	V _{IN} =4.0V, V _{EN} =0V (Disabled)			30		Ω	

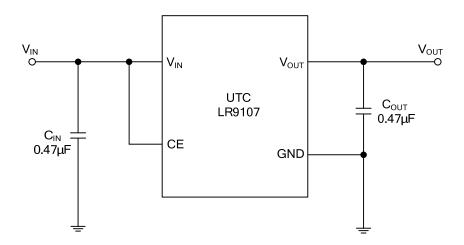

Notes: 1. Dropout voltage (V_{DROP}) is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value.

- 2. Quiescent current (IQ) is the current difference between the input and the output.
- 3. Short circuit current (I_{SC}) is measured with V_{OUT} pulled to GND.
- 4. This specification is guaranteed by design.
- 5. UTC LR9107 has 2 options for output, built-in discharge and non-discharge.
- 6. Potential multiple grades based on following output voltage accuracy.


TEST CIRCUITS


Basic Test Circuit

Test Circuit for Supply Current



■ TEST CIRCUITS (Cont.)

Test Circuit for Load Transient Response

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.