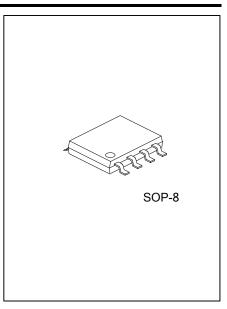


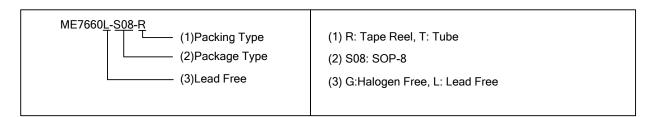
UNISONIC TECHNOLOGIES CO., LTD

ME7660 CMOS IC

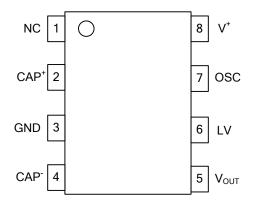

CHARGE PUMP DC-DC VOLTAGE CONVERTER

DESCRIPTION

ME7660 is a charge pump DC-DC voltage converter using AL-gate CMOS technology and optimization design. It converters a +1.5V to +10V input to a corresponding -1.5V to -10V output using only two external capacitors, eliminating inductors and their associated cost, size and EMI. The on-board oscillator operates at a nominal frequency of 10KHZ. Operation below 10 KHZ (for lower supply current applications) is possible by connecting an external capacitor from OSC to ground.


FEATURES

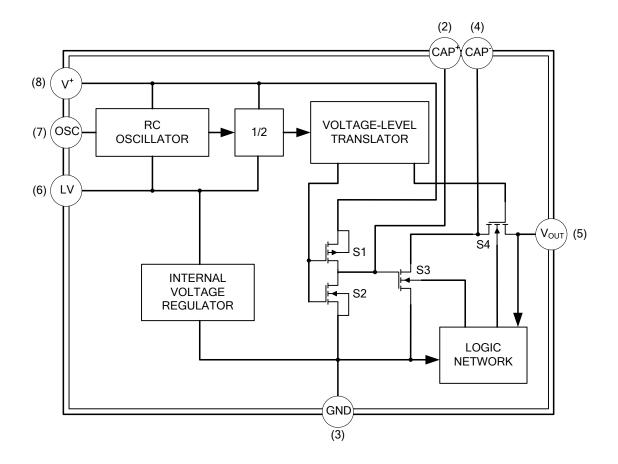
- * Converts +5V Logic supply to +5V
- * Wide input voltage range:1.5V~10V
- * Efficient voltage conversion:99.9%
- * Good power efficiency:98%
- * Low power supply:50uA@5Vin
- * Only two external capacitors required
- * Compatible with RS232 negative power supply standard
- * No Dx diode needed for high voltage operation


ORDERING INFORMATION

Ordering	Number	Dealerna	Packing	
Lead Free	Halogen Free	Package		
ME7660L-SO8-R	ME7660G-SO8-R	SOP-8	Tape Reel	
ME7660L-SO8-T	ME7660G-SO8-T	SOP-8	Tube	

Chunhing 1688.com www.unisonic.com.tw 1 of 5 QW-R502-730.a **ME7660 CMOS IC**

PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	SYMBOL	DESCRIPTION
1	NC	No connection
2	CAP ⁺	Connection external capacitor (+) pin
3	GND	Ground Pin
4	CAP ⁻	Connection external capacitor (-) pin
5	V_{OUT}	Voltage output pin
6 LV Lo		Low voltage selection pin
7	OSC	Connecting oscillation capacitor pin
8	V ⁺	Power supply pin

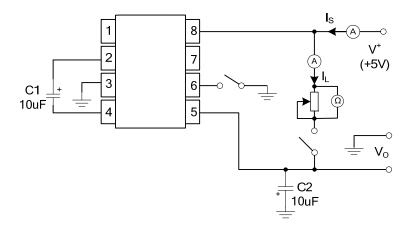
ME7660 CMOS IC

BLOCK DIAGRAM

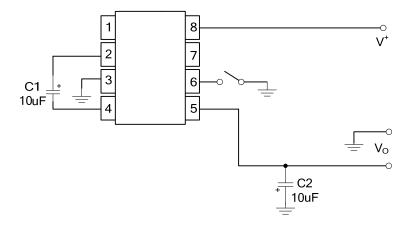
ME7660 CMOS IC

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V_{IN}	10.5	V
LV and OCC lamuta Valtage	V ⁺ <5.5V	V_{LX}	-0.3~(V ⁺ +0.3)	V
LV and OSC Inputs Voltage	V ⁺ >5.5V	V _{osc}	$(V^+-5.5)\sim(V^++0.3)$	V
Power Dissipation(T _A ≤75°C)		P_{D}	470	mW
Current Into LV V ⁺ >3.5V		I _{LV}	20	uA
Operating Temperature		T _{OPR}	-40 ~ +85	$^{\circ}\mathbb{C}$
Storage Temperature		T _{STG}	-65 ~ +150	$^{\circ}\mathbb{C}$


ELECTRICAL CHARACTERISTICS (V⁺=5V,C_{OSC}=0)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current		l ⁺	R _L =∞		60	120	uA
Cumply \/altaga	High	V_H	LV Open	3		10	V
Supply Voltage	Low	V_L^+	LV to GND	1.5		4	V
Output Resistance		D	I_{OUT} =20mA, T_A =25°C		110		Ω
			I_{OUT} =3mA, V^{+} =2V, T_{A} =25 $^{\circ}$ C		220		Ω
Oscillator Frequency		Fosc	Pin 7 open		10		kHz
Power Efficiency		P_{EFF}	$R_L=5k\Omega$	90	98		%
Voltage Conversion Efficiency		V_{EFF}	R _L =∞	98	99.9		%



ME7660 cmos ic

TESTING CIRCUIT

■ TYPICAL APPLICATION CIRCUIT

Above figure is the basic application circuit to provide a negative supply from -1.5V \sim -10V while a positive supply from +1.5V \sim +10V is available. When V⁺=+5V, the output resistance is about 100 Ω ; The output voltage is -4V while the load current is 10mA.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.