MJE13002-E

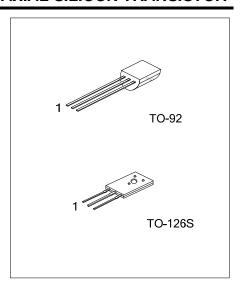
NPN EPITAXIAL SILICON TRANSISTOR

HIGH VOLTAGE **FAST-SWITCHING NPN** POWER TRANSISTOR

DESCRIPTION

The UTC MJE13002-E designed for use in high-volatge, high speed, power switching in inductive circuit, It is particularly suited for 115 and 220V switchmode applications such as switching control, regulator's,inverters, DC-DC converter, Motor Solenoid/Relay drivers and deflection circuits.

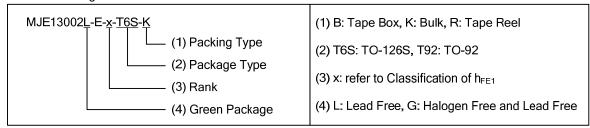
FEATURES

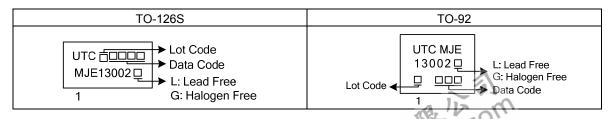

*Collector-Emitter Sustaining Voltage:

 V_{CEO} (sus)=300V.

*Collector-Emitter Saturation Voltage:

 $V_{CE(sat)}$ =1.0V(Max.) @I_C=1.0A, I_B =0.25A


*Switch Time- tf =0.7µs(Max.) @Ic=1.0A.


ORDERING INFORMATION

Ordering	Package	Pin	Assignn	Dealine			
Lead Free	Lead Free Halogen Free		1	2	3	Packing	
MJE13002L-E-x-T6S-K	MJE13002G-E-x-T6S-K	TO-126S	В	С	E	Bulk	
MJE13002L-E-x-T92-B	MJE13002G-E-x-T92-B	TO-92	В	С	E	Tape Box	
MJE13002L-E-x-T92-K	MJE13002G-E-x-T92-K	TO-92	В	С	Е	Bulk	

Pin Assignment: C: Collector B: Base E: Emitter

MARKING

www.unisonic.com.tw 1 of 8 Ver.A

ABSOLUTE MAXIMUM RATINGS

PARA	METER		SYMBOL	RATINGS	UNIT	
Collector-Emitter Voltage			V _{CEO(SUS)}	300	V	
Collector-Emitter Voltage			V_{CEV}	600	V	
Emitter Base Voltage			V_{EBO}	9	V	
Collector Current	Continuous		I _C	1.5	۸	
Collector Current	Peak (1)		I _{CM}	3	_ A	
Base Current	Continuous		Ι _Β	0.75	A	
base Current	Peak (1)		I _{BM}	1.5		
Emittor Current	Continuous		Ι _Ε	2.25	A	
Emitter Current	Peak (1)		I _{EM}	4.5	А	
	TA=25°C	TO-92	P_D	1.0		
		TO-126S		1.4	Watts	
	Derate	TO-92		8	MW/°C	
Total Dawar Dissination	above 25°C	TO-126S		11.2		
Total Power Dissipation	TC=25°C	TO-92		5		
		TO-126S		40	Watts	
	Derate TO-92			40	MW/°C	
	above 25°C	TO-126S		320		
Junction Temperature			ΤJ	150	°C	
Storage Temperature	•		T _{STG}	-65 to +150	°C	

■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT	
Lunction to Coop	TO-92	0	25	°C/W	
Junction to Case	TO-126S	θ _{JC}	3.12	C/VV	
lunction to Ambient	TO-92	0	122	°C/W	
Junction to Ambient	TO-126S	θ_{JA}	89	C/VV	
Maximum Load Temperature for Soldering Purposes:		т	275	°C	
1/8" from Case for 5 Seconds		I L	275	C	

Note: 1. Pulse Test : Pulse Width=5ms, Duty Cycle≤10%

2. Designer 's Data for "Worst Case" Conditions – The Designer 's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves – representing boundaries on device characteristics – are given to facilitate "Worst case" design.

ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS (1)								
V _{CEO(SUS)}	I_C =10 mA , I_B =0	300						
	V _{CEV} =Rated Value, V _{BE} (off)=1.5 V			1				
I _{CEV}	I _{CEV} V _{CEV} =Rated Value,			_				
	V _{BE} (off)=1.5V,Tc=100°C			5				
SECOND BREAKDOWN								
h _{FE1}	I _C =0.5 A, V _{CE} =2 V	8		40				
h _{FE2}	I _C =1 A, V _{CE} =2 V	5		25				
h _{FE3}	I _C =200mA, V _{CE} =10V	9		40				
	I _C =0.5A, I _B =0.1A			0.8				
$V_{CE(SAT)}$	I _C =1A, I _B =0.2A			1.8	V			
, ,	I _C =1.5A, I _B =0.5A			3]			
.,	I _C =0.5A, I _B =0.1A			1	V			
V BE(SAT)	I _C =1A, I _B =0.25 A			1.2	V			
f⊤	I _C =100mA, V _{CE} =10 V, f=1MHz	4	10		MHz			
Cob	V _{CB} =10V, I _E =0, f=0.1MHz		21		pF			
E 1)								
t _d	105)/ 1 44		0.05	0.1	μs			
t _r			0.5	1	μs			
ts			2	4	μs			
t _f	7Duty Cycle≤1%		0.4	0.7	μs			
INDUCTIVE LOAD, CLAMPED (TABLE 1, FIGURE 7)								
t _{sv}			1.7	4	μs			
t _c	* ' '		0.29	0.75	μs			
t _{fi}	$1_{B1}=0.2A, V_{BE}(O\Pi)=5V, I_{C}=100^{\circ}C$		0.15		μs			
	Vceo(sus) Icev Ic	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

CLASSIFICATION OF h_{FE1}

RANK	Α	В	С	D	Е	F
RANGE	8 ~ 16	15 ~ 21	20 ~ 26	25 ~ 31	30 ~ 36	35 ~ 40

APPLICATION INFORMATION

Table 1.Test Conditions for Dynamic Performance

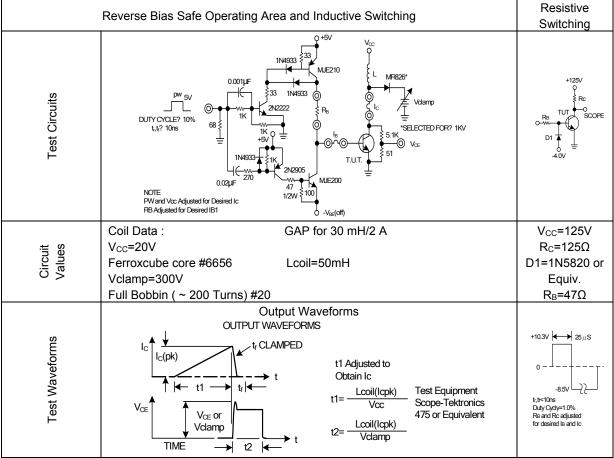
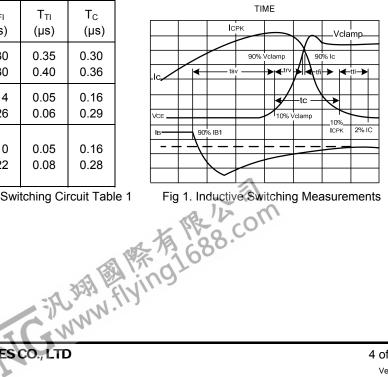



Table 2. Typical Inductive Switching Performance

I _C (AMP)	T _C (°C)	T _{SV} (µs)	T _{RV} (µs)	T _{FI} (µs)	T _{TI} (µs)	T _C (µs)
0.5	25	1.3	0.23	0.30	0.35	0.30
	100	1.6	0.26	0.30	0.40	0.36
1	25	1.5	0.10	0.14	0.05	0.16
	100	1.7	0.13	0.26	0.06	0.29
1.5	25	1.8	0.07	0.10	0.05	0.16
	100	3	0.08	0.22	0.08	0.28

Note: All Data Recorded in the inductive Switching Circuit Table 1

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase, However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each wave form to determine the total switching time, For this reason, the following new terms have been defined.

t_{SV}=Voltage Storage Time, 90% IB1 to 10% Vclamp

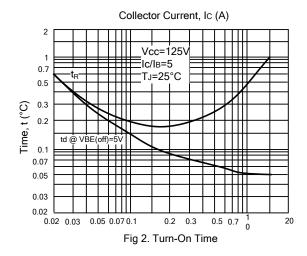
t_{RV}=Voltage Rise Time, 10-90% Vclamp

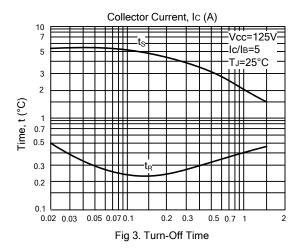
t_{FI}=Current Fall Time, 90-10% I_C

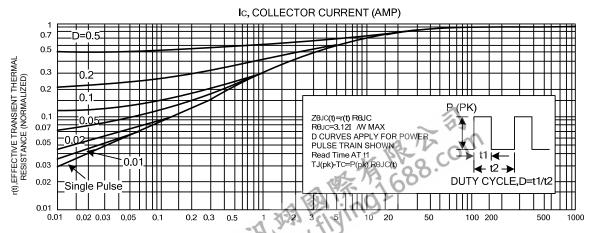
t_{TI}=Current Tail, 10-2% I_C

t_C=Crossover Time, 10% Vclamp to 10% I_C

An enlarged portion of the inductive switching waveforms is shown in Figure 1 to aid in the visual identity of these terms.


For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222:


PSWT=1/2 Vcclc (tc)f


In general, trv + tfi≒tc. However, at lower test currents this relationship may not be valid.

As is common with most switching transistor, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100°C.

RESISTIVE SWITCHING PERFORMANCE

■ SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second break-down. Safe operating area curves indicate Ic – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on Tc=25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $Tc \ge 25$ °C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 5 may be found at any case tem-perature by using the appropriate curve on Figure 7.

T_J(pk) may be calculated from the data in Figure 5. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage—current conditions during re-verse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an ava-lanche mode. Figure 6 gives RBSOA characteristics.

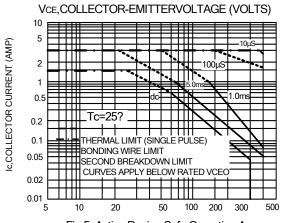
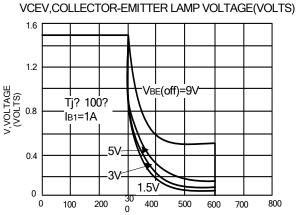
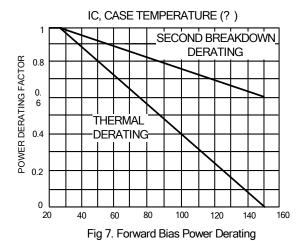
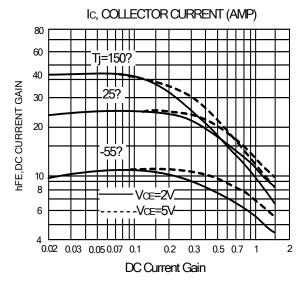
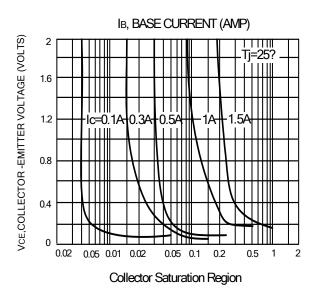
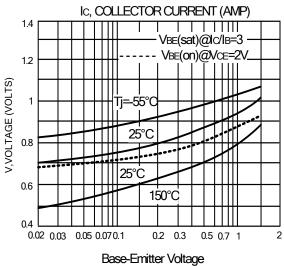
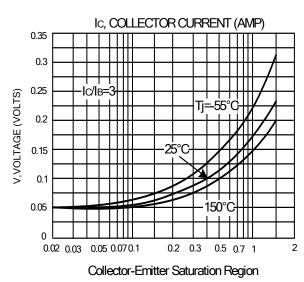
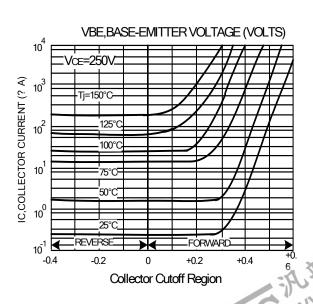


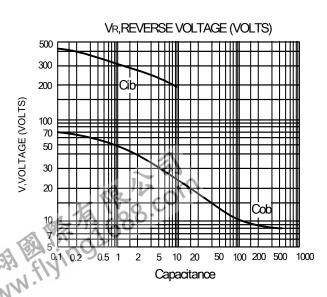
Fig 5. Active Region Safe Operating Area


Fig 6. Reverse Bias Safe Operating Area




■ TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

