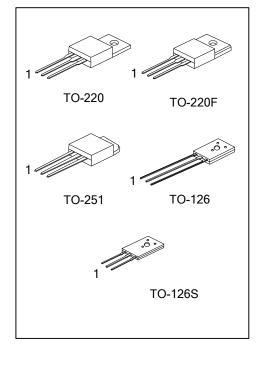
MJE13005D

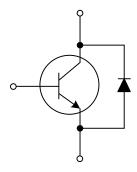
Preliminary

NPN SILICON TRANSISTOR

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

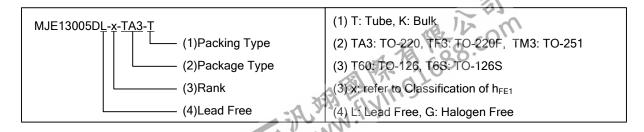

■ DESCRIPTION

The UTC **MJE13005D** is a high voltage fast-switching NPN power transistor. It is characterized by high breakdown voltage, high current capability, high switching speed and high reliability.


The UTC **MJE13005D** is intended to be used in energy-saving light, electronic ballast, high frequency switching power supply, high frequency power transform or common power amplifier, etc.

■ FEATURES

- * High Breakdown Voltage
- * High Current Capability
- * High Switching Speed
- * High Reliability
- * RoHS-Compliant Product



■ INTERNAL SCHEMATIC DIAGRAM

■ ORDERING INFORMATION

Ordering	Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Halogen Free Package		2	3	Packing
MJE13005DL-x-TA3-T	MJE13005DG-x-TA3-T	TO-220	В	С	Е	Tube
MJE13005DL-x-TF3-T	MJE13005DG-x-TF3-T	TO-220F	В	С	Е	Tube
MJE13005DL-x-TM3-T	MJE13005DG-x-TM3-T	TO-251	В	С	E	Tube
MJE13005DL-x-T60-K	MJE13005DG-x-T60-K	TO-126	В	С	Е	Bulk
MJE13005DL-x-T6S-K	MJE13005DG-x-T6S-K	TO-126S	В	С	E	Bulk

<u>www.unisonic.com.tw</u> 1 of 3

ABSOLUTE MAXIMUM RATING (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATING	UNIT
Collector- Emitter Voltage (V _{BE} =0)		V_{CES}	700	V
Collector-Emitter Voltage (I _B =0)		V_{CEO}	400	V
Emitter-Base Voltage		V_{EBO}	9	V
Collector Current	DC	Ic	4	Α
	Pulse	I _{CP}	8	Α
Base Current	DC	I _B	2	Α
	Pulse	I _{BP}	4	Α
	TO-220/TO-220F		75	
Power Dissipation	TO-251	P_{D}	50	W
	TO-126/TO-126S		45	
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT	
	TO-220/TO-220F		62.5		
Junction to Ambient	TO-251	θ_{JA}	110	°C/W	
	TO-126/TO-126S		89		
	TO-220/TO-220F		1.67		
Junction to Case	TO-251	θ_{JC}	2.5	°C/W	
	TO-126/TO-126S		2.78		

ELECTRICAL CHARACTERISTICS

					_	_	_	_	
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Collector-Emitter Breakdown Voltage		BV _{CEO}	I _C =1	I _C =10mA, I _B =0				V	
Collector -Base Breakdown Voltage		BV _{CBO}	I _C =1	I _C =1mA, I _B =0				V	
Emitter-Base Breakdown Voltage		BV _{EBO}	_E = '	$I_E = 1 \text{mA}, I_C = 0$				V	
Collect Cut-off Curr	rent	I _{CBO}	V _{CB} =700V, I _E =0				100	μA	
Collect Cut-off Curr	rent	I _{CEO}	V _{CE} =400V,I _B =0				50	μA	
Emitter Cut-off Cur	rent	I _{EBO}	V _{EB} =9V, I _C =0				10	μA	
DC Current Gain		h _{FE1}	V_{CE}	V _{CE} =5V, I _C =500mA			50		
		h _{FE2}	V_{CE}	=5V, I _C =2A	5				
Collector-Emitter Saturation Voltage		V _{CE}	I _C =1	A, I _B =0.2A			0.5		
			$I_C=2$	2A, I _B =0.5A			0.6		
			$I_C=4$	A, I _B =1A			1	V	
			I _C =2	2A, I _B =0.5A, T _C =100°C			1		
Base-Emitter Saturation Voltage		$V_{BE(SAT)}$	I _C =2A, I _B =0.5A				1.6	V	
Resistive Load	Fall Time	t _F	V _{CC} =24V, I _C =2A, I _{B1} =-I _{B2} =0.4A				0.7	μs	
	Storage Time	ts					4	μs	
Current Gain Bandwidth Product		f _T	V _{CE}	=10V, I _C =0.5A	4			MH_Z	
Diode Forward Voltage		V _F	I _F =1A		7.7		1.5	V	
■ CLASSIFICATION OF h _{FE1}									
RANK	Α	В		We / A D D			F		

CLASSIFICATION OF h_{FE1}

- OLAGOII IX		1	1/4 /0	9.0			
RANK	Α	В	C 7	D	E		
RANGE	15 ~ 20	20 ~ 25	25 ~ 30	30 ~ 40	40 ~ 50		
WWW. FLYIN							
	ONIC TECHNOLO	GIES CO., LTD			2 of 3		

^{2.} Pulse Test: Pulse Width = 5.0 ms, Duty Cycle < 10%.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

