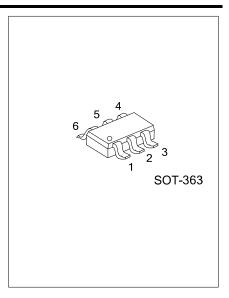


UNISONIC TECHNOLOGIES CO., LTD

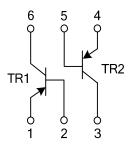
MMDT3906

Preliminary

PNP EPITAXIAL SILICON TRANSISTOR

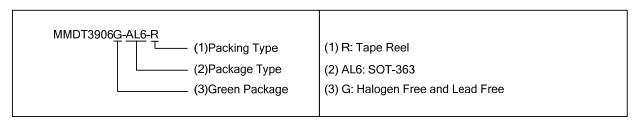

DUAL PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR

■ DESCRIPTION

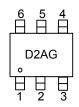

The UTC **MMDT3906** is a Dual PNP small signal surface mount transistor. It's suitable for low power amplification and switch.

■ FEATURES

- * Suitable for Low Power Amplification and Switching
- * Epitaxial Planar Die Construction
- * Extremely-Small Surface Mount Package



■ EQUIVALENT CIRCUIT



ORDERING INFORMATION

Ordering Number	Package	Pin Assignment						Dankina	
		1	2	3	4	5	6	Packing	
MMDT3906G-AL6-R	SOT-363	E1	B1	C2	E2	B2	C1	Tape Reel	

MARKING

(1) 1688.com

<u>www.unisonic.com.tw</u> 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Base Voltage	V_{CBO}	-40	V
Collector-Emitter Voltage	V_{CEO}	-40	V
Emitter-Base Voltage	V_{EBO}	-5.0	V
Collector Current-Continuous	Ic	-200	mA
Power Dissipation	P_D	200	mW
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **THERMAL DATA** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	625	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF Characteristics (Note)						
Collector-Base Breakdown Voltage	V_{CBO}	I_{C} =-10 μ A, I_{E} =0	-40			V
Collector-Emitter Breakdown Voltage	V_{CEO}	I_C =-1mA, I_B =0	-40			V
Emitter-Base Breakdown Voltage	V_{EBO}	$I_E=-10\mu A, I_C=0$	-5			V
Collector Cutoff Current	I _{CEX}	V _{CE} =-30V, V _{EB} =-3V			-50	nA
Base Cutoff Current	I _{BL}	V _{CE} =-30V, V _{EB} =-3V			-50	nA
ON Characteristics (Note)				_		
DC Current Gain	h _{FE1}	V _{CE} =-1V, I _C =-0.1mA	60			
	h _{FE2}	V _{CE} =-1V, I _C =-1mA	80			
	h _{FE3}	V _{CE} =-1V, I _C =-10mA	100		300	
	h _{FE4}	V_{CE} =-1V, I_{C} =-50mA	60			
	h _{FE5}	V _{CE} =-1V, I _C =-100mA	30			
Collector-Emitter Saturation Voltage	V _{CE(SAT)} 1	I _C =-10mA, I _B =-1mA			-0.25	V
	V _{CE(SAT)} 2	I _C =-50mA, I _B =-5mA			-0.4	V
Base-Emitter Saturation Voltage	V _{BE(SAT)} 1	I _C =-10mA, I _B =-1mA	-0.65		-0.85	V
	V _{BE(SAT)} 2	I _C =-50mA, I _B =-5mA			-0.95	V
Small Signal Characteristics					ā.	
Output Capacitance	Сов	V _{CB} =-5V,I _E =0, f=1MHz			4.5	pF
Current Gain-Bandwidth Product	f _T	V _{CE} =-20V, I _C =-10mA, f=100MHz	250			MHz
Switching Characteristics						
Turn on Time	ton	V_{CC} =-3V, V_{BE} =-0.5V, I_{C} =-10mA, I_{B1} =-1mA			70	ns
Turn off Time	t _{OFF}	I _{B1} =1 _{B2} =-1mA			300	ns

Note: Pulse test: $P_W \le 300\mu s$, Duty Cycle $\le 2.0\%$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

