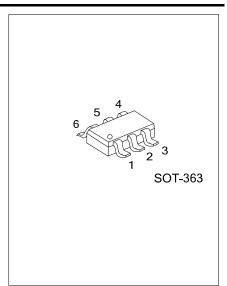
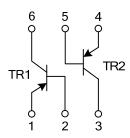


UNISONIC TECHNOLOGIES CO., LTD

MMDT5401 Preliminary DUAL TRANSISTOR

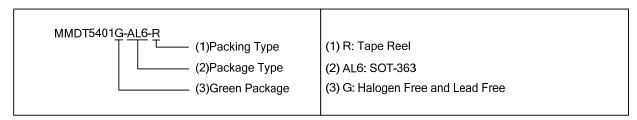

HIGH VOLTAGE SWITCHING **TRANSISTOR**

DESCRIPTION

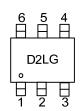

The UTC MMDT5401 is a high voltage fast-switching dual PNP transistor. It is characterized with high breakdown voltage, high current gain and high switching speed.

FEATURES

- * High Collector-Emitter Voltage: V_{CEO} = -150V
- * High current gain



EQUIVALENT CIRCUIT



ORDERING INFORMATION

Ordering Number	Package	Pin Assignment					Dooking	
		1	2	3	4	5	6	Packing
MMDT5401G-AL6-R	SOT-363	E1	B1	C2	E2	B2	C1	Tape Reel

MARKING

Chunnifying 1688.com www.unisonic.com.tw 1 of 3 QW-R218-021.c

■ **ABSOLUATE MAXIUM RATINGS** (T_A=25°C unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector -Base Voltage	V_{CBO}	-160	V
Collector -Emitter Voltage	V_{CEO}	-150	V
Emitter -Base Voltage	V_{EBO}	-5	V
DC Collector Current	I _C	-600	mA
Power Dissipation	P_D	200	mW
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (Ta= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Base Breakdown Voltage	V_{CBO}	I _C =-100μA, I _E =0	-160			V
Collector-Emitter Breakdown Voltage	V_{CEO}	I_C =-1mA, I_B =0	-150			V
Emitter-Base Breakdown Voltage	V_{EBO}	I _E =-10μA, I _C =0	-5			V
Collector Cut-off Current	I _{CBO}	V _{CB} =-120V, I _E =0			-50	nA
Emitter Cut-off Current	I _{EBO}	V_{BE} =-3 V , I_{C} =0			-50	nA
DC Current Gain(note)	h _{FE}	V_{CE} =-5V, I_C =-1mA	80			
		V_{CE} =-5V, I_{C} =-10mA	80	160	400	
		V_{CE} =-5V, I_C =-50mA	80			
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C =-10mA, I _B =-1mA			-0.2	V
		I _C =-50mA, I _B =-5mA	-0.5		V	
Base-Emitter Saturation Voltage	V _{BE(SAT)}	I _C =-10mA, I _B =-1mA			-1	\/
		I _C =-50mA, I _B =-5mA			-1	V
Current Gain Bandwidth Product	f _T	V_{CE} =-10V, I_{C} =-10mA, f=100MHz	100		300	MHz
Output Capacitance	C _{ob}	V_{CB} =-10V, I_E =0, f=1MHz			6.0	pF
Noise Figure	NF	I_{C} =-0.25mA, V_{CE} =-5V R _S =1k Ω , f=10Hz ~ 15.7kHz			8	dB

Note: Pulse test: PW<300μs, Duty Cycle<2%

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

