

UNISONIC TECHNOLOGIES CO., LTD

P1484

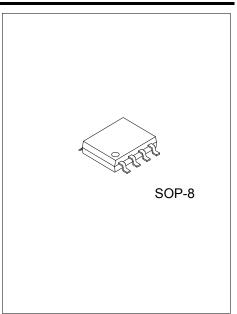
LINEAR INTEGRATED CIRCUIT

3A, 18V, 340KHZ SYNCHRONOUS RECTIFIED **STEP-DOWN CONVERTER**

DESCRIPTION

The UTC P1484 is a synchronous buck regulator. The device provides 3A of continuous load current over a wide input voltage of 5V~18V. Current mode control provides fast transient response and cycle-bycycle current limit. An adjustable soft-start prevents inrush current at turn-on

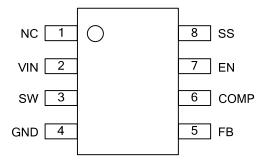
The UTC P1484 can provide low-ripple power, high efficiency, and perfect transient characteristics. The duty ratio varies linearly from 0% to 92% in the PWM control. The error amplifier circuit and soft-start circuit included in this device can prevent overshoot at startup. An enable function, an over current protect (OCP) function and short circuit protect (SCP) are also build inside, and when OCP happens, the operation frequency will be reduced.


FEATURES

- * 3A Output Current
- * Wide 6V~18V Operating Input Range
- * Integrated Power MOSFET Switches
- * Programmable Soft-Start
- * Stable with Low ESR Ceramic Output Capacitors
- * Fixed 340KHz Frequency
- * Cycle-by-Cycle Over Current Protection

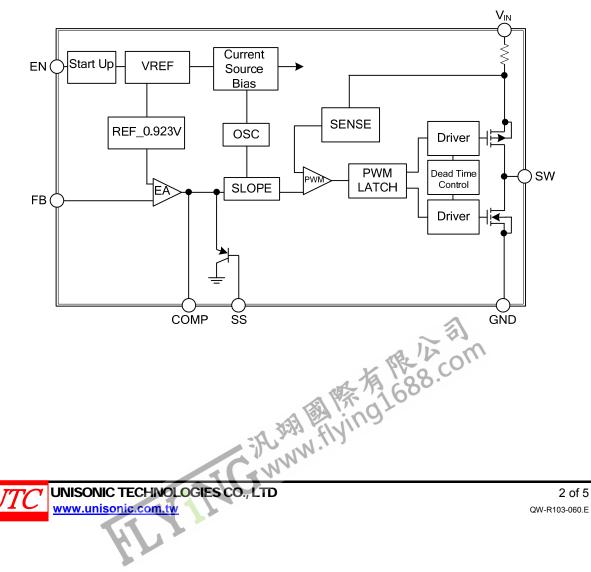
ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
P1484L-S08-R	P1484G-S08-R	SOP-8	Tape Reel	



P1484

LINEAR INTEGRATED CIRCUIT


■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	NC	No Bonding
2	V _{IN}	IC power supply pin.
3	SW	Power Switching Output.
4	GND	Ground.
5	FB	Feedback Input.
6	COMP	Compensation Node.
7	EN	Enable Input.
8	SS	Soft-Start Control Input.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING (Note 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{IN}	-0.3~+23	V
Switch Node Voltage	V _{SW}	25	V
All Other Pins		-0.3~+6	V
Continuous Power Dissipation ($T_A=25^{\circ}C$) (Note 2)	PD	1.4	W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65~+150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX)=(T_J (MAX) - T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.

THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ _{JA}	90	°C/W
Junction to Case	θ _{JC}	45	°C/W

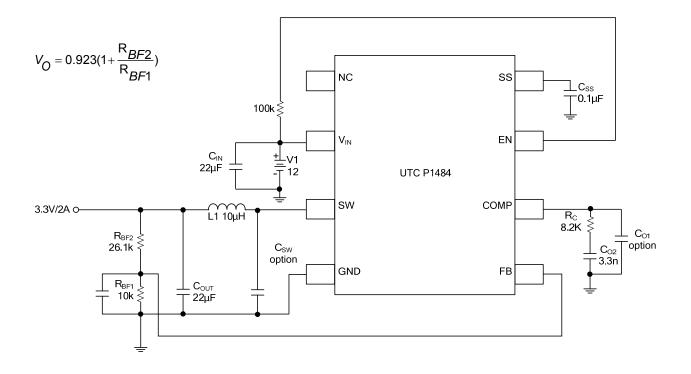
Note: Measured on JESD5 1-7, 4-layer PCB

RECOMMENDED OPERATING CONDITIONS

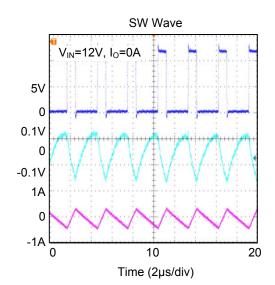
PARAMETER	SYMBOL	RATING	UNIT
Input Voltage	V _{IN}	6~18	V
Output Voltage	V _{OUT}	0.923~18	V
Ambient Operating Temperature	T _{OPR}	-40~+85	°C

Note: The device is not guaranteed to function outside of its operating conditions.

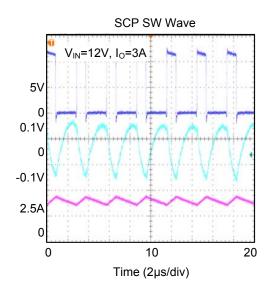
ELECTRICAL CHARACTERISTICS (VIN=12V, TA=+25°C, unless otherwise specified)

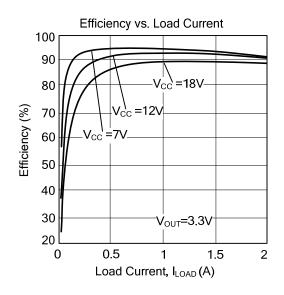

UNISONIC TECHNOLOGIES CO., LTD					3 (of 5
	J.	JEFF BALLY NO 1088.CC				
Note: Guaranteed by design, not tested.		EN IN OIL				
Thermal Shutdown (Note 1)		1 18 680.		160		°C
Soft-Start Current		V _{ss} =0V	1.	15		μA
Input Under Voltage Lockout Threshold		V _{IN} Rising	3	4		V
EN Shutdown Threshold Voltage	110 0 1	V _{EN} Rising	0.8	1.2	2.0	V
Maximum Duty Cycle	D _{MAX}	V _{FB} =1.0V		92		%
Short Circuit Oscillation Frequency	F _{OSC2}	V _{FB} =0V		40		KHz
Oscillation Frequency	F _{OSC1}		300	365	430	KHz
Transconductance	G _{CS}			5		A/V
COMP to Current Sense				1.1		A
Upper Switch Current Limit Lower Switch Current Limit		Minimum Duty Cycle From Drain to Source	3.4	1.1		A A
High-Side Switch Leakage Current		V _{EN} =0V, V _{SW} =0V	3.4		10	μA
Low-Side Switch On Resistance (Note 1)	R _{DS(ON)2}			50		mΩ
High-Side Switch On Resistance (Note 1)	R _{DS(ON)1}			70		mΩ
Feedback Voltage	V _{FB}	6V ≤V _{IN} ≤23V	0.900	0.923	0.946	V
Supply Current		V _{EN} =2.0V, V _{FB} =1.0V		3.5	5	mA
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT

P1484


4 of 5

TYPICAL APPLICATION CIRCUIT





LINEAR INTEGRATED CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

