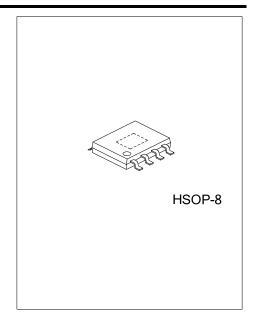
UNISONIC TECHNOLOGIES CO., LTD

P34563

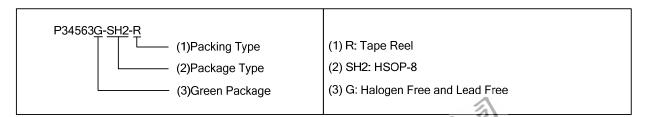

LINEAR INTEGRATED CIRCUIT

PWM CONTROL 3A STEP-DOWN CONVERTER

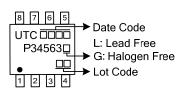
DESCRIPTION

The UTC P34563 consists of step-down switching regulator with PWM control.

The UTC P34563 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to the duty ratio linearly forms 0 up to 100%. With the addition of an internal P-channel Power MOS, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the HSOP-8 package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage up to 40V.

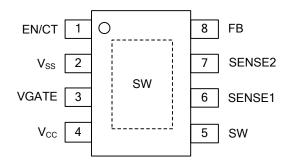


FEATURES


- * Input voltage: 8V~40V
- * Oscillation frequency: 100KHz
- * Duty ratio: 0%~100% PWM control
- * Adjustable version output voltage range from V_{FB} to 38V
- * Enable and auto restart function.
- * Short Circuit Protect (SCP).
- * Thermal Shutdown function / Internal OVP.
- * Built-in internal SW P-channel MOS.

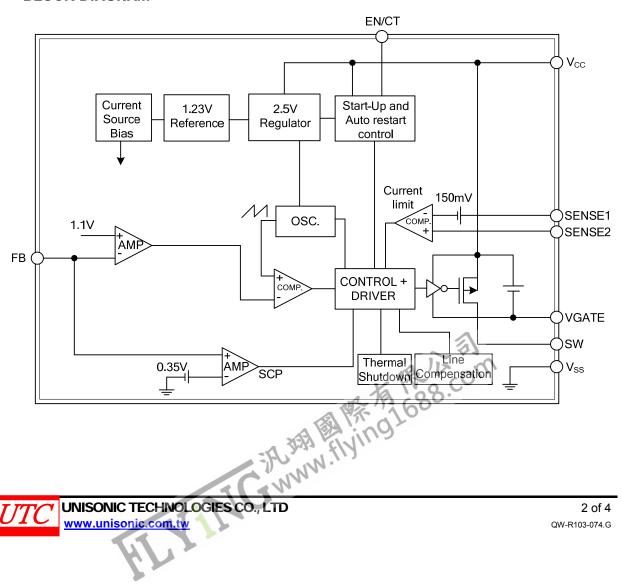
ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
P34563L-SH2-R	P34563G-SH2-R	HSOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 4


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	EN/CT	ON/OFF and auto restart control		
2	V_{SS}	GND pin		
3	VGATE	Driver gate clamping pin.		
4	V_{CC}	Operating voltage input		
5	SW	Switch pin.		
6	SENSE1	Current sense input1		
7	SENSE2	Current sense input2		
8	FB	Feedback pin		

BLOCK DIAGRAM

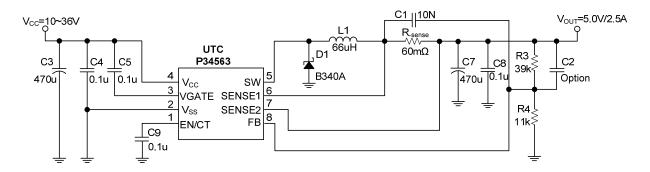
ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	RATINGS	UNIT
VCC Pin Voltage	V_{CC}	40	V
EN/CT Voltage		6	V
SENSE1, SENSE2 Pin Voltage		38	V
Switch Pin Voltage	V_{SW}	V _{CC}	V
Power Dissipation	P_D	$(T_J - T_A)/\theta_{JA}$	W
Operating Supply Voltage	V_{OP}	+8 ~ +40	V
Output Current	I _{OUT}	0 ~ 3	Α
Operating Temperature	T_{OPR}	-20 ~ +125	°C
Storage Temperature	T _{STG}	-40 ~ +165	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	143	°C/W	
Junction to Case	θ _{JC}	15	°C/W	


ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FB	V_{FB}	I _{OUT} =10mA	1.08	1.10	1.12	V
Under Voltage Lockout	U_VLO	Falling		6		V
UVLO Hysteresis				0.8		V
Line Regulation	ΔV_{OUT}	V _{CC} =10~40V		0.5	1	%
Load Regulation	ΔV_{OUT}	I_{OUT} =0~1A, R_{SENSE} =140m Ω		10		mV
Quiescent Current	Iccq	V _{FB} >1.2V		3	7	mA
Oscillator Frequency	Fosc		80	100	120	KHz
Max. Duty Cycle (ON)	DC	Force Driver On V _{FB} =0.7V		100		%
Min. Duty Cycle (OFF)		Force Driver Off V _{FB} =1.2V		0		%
Internal MOSFET R _{DSON}	R _{DSON}	V_{CC} =12V, V_{FB} = 0.7V		110	170	mΩ
Sense Voltage	V _{SENSE}	V _{SENSE1} -V _{SENSE2}	135	150	165	mV
EN/CT Pin Logic Input Threshold	V_{EN}	Shutdown Mode			0.3	V
Voltage	V_{CT}	Auto Restart, V _{FB} <0.4V	0.5		1.5	V
EN/CT Pin Current	I _{EN/CT-C}	Charge Current		-32		μA
EN/CT Pin Current	I _{EN/CT-D}	Discharge Current		1.5		μΑ
Thermal Shutdown Temp	T _{SD}			160		°C
Thermal Shutdown Hysteresis	T _{SH}	_		40		°C

■ TYPICAL APPLICATION CIRCUIT

AL CAPACITOR

Current Limit (A) =
$$\frac{150\text{mV}}{\text{Rsense}}$$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.