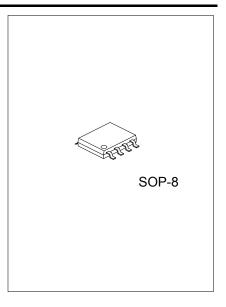
UNISONIC TECHNOLOGIES CO., LTD

PA2308

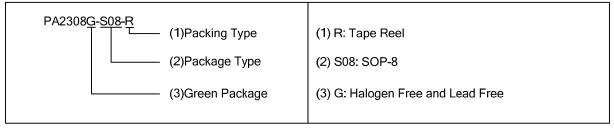
LINEAR INTEGRATED CIRCUIT

CLASS AB STEREO **HEADPHONE DRIVER**

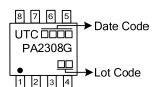

DESCRIPTION

As operating on a single 5V supply, the UTC PA2308 is capable of delivering 280mW of max. Output power to an 8Ω load or 110mW to a 32 Ω load with less than 10% (THD+N).

The device is very sutible for portable digital audio application.

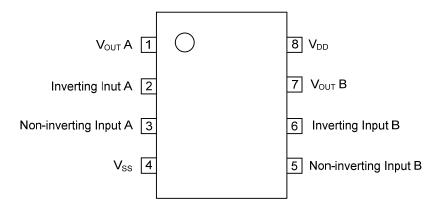

FEATURES

- * Output power less than 10% THD+N, V_{DD}=5V(TYP)
- --280mW/CH (typical) into a 8Ω load
- --110mW/CH (typical) into a 32Ω load
- *Very High signal-to-noise ratio
- *Large output voltage swing
- *Good power supply ripple rejection
- *Low power consumption and Low distortion
- *Fix wide temperature range
- *Without switch ON/OFF clicks



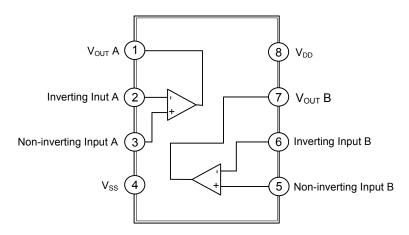
ORDERING INFORMATION

Ordering Number	Package	Packing
PA2308G-S08-R	SOP-8	Tape Reel



MARKING

SCO. 1 SCO. 1


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	PIN DESCRIPTION
1	V _{OUT} A	0	Channel A output pin
2	Inverting Input A		Inverting input for channel A
3	Non- Inverting Input A		Non-inverting input for channel A
4	V_{SS}		Ground
5	Non- Inverting Input B		Non-inverting input for channel B
6	Inverting Input B		Inverting input for channel B
7	V _{OUT} B	0	Channel B output pin
8	V_{DD}	I	Supply voltage input pin

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (TA=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD}	7	V
Junction Temperature	T_J	150	°C
Operating Temperature	T _{OPR}	-40 to 85	°C
Storage Temperature	T _{STG}	-65 to +150	°C

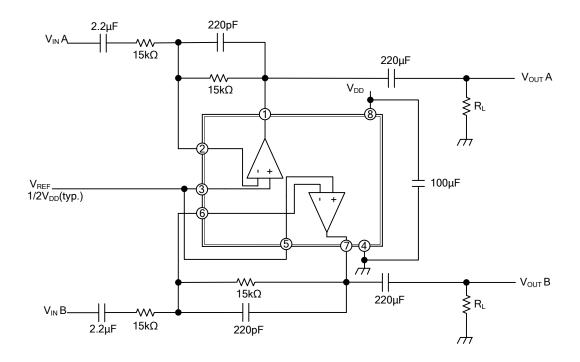
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient	θ_{JA}		210		K/W

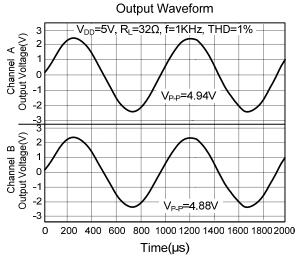
ELECTRICAL CHARACTERISTICS(T_A=25°C; unless otherwise specified)

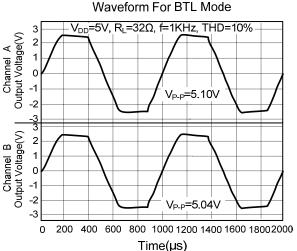
 V_{DD} =5V, V_{SS} =0V, f=1kHz, R_L =32 Ω

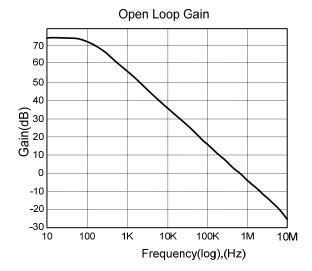

VDD-5V, VSS-0V, I= IKI IZ, IX[-5212		0) (1 1 1 0 0)	COMPITIONS		T) (E	14431	
PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY		1					
Supply Voltage	Single	V _{DD}		3.0	5.0	6.0	V
Supply Voltage	Dual			±1.5	±2.5	±3.0	
Negative Supply Voltage		V_{SS}		-1.5	-2.5	-3.0	V
Supply Current		I_{DD}	No Load		2.5	5	mA
Total Power Dissipation		P_D	No Load		12.5	25	mW
DC CHARACTERISTICS							
Input Offset Voltage		V _{IN(OFF)}			5		mV
Input Bias Current		I _{BIAS}			10		pА
Common Mode Voltage		V _{CM}		0		3.5	V
Closed Loop Voltage Gain		Gv	$R_L=5k\Omega$		75		dB
Max. Output Current		l _{out}	(THD+N)/S<0.1%		140		mA
Output Resistance		Ro			0.25		Ω
AC CHARACTERISTICS							
Output Voltage Swing			$R_L=32\Omega(Note 1)$	0.25		4.75	V
	V _{OUT}	$R_L=16\Omega(Note 1)$	0.5		4.5		
Power Supply Rejection Ratio		PSRR	f _{IN} =100Hz, V _{RIPPLE(P.P)} =100mV		65		dB
Channel Separation		αcs	R _L =32Ω		95		dB
Load Capacitance		CL				200	pF
Total Harmonic Distortion Plus Nois	se to	(TUD : NI) (O	HD+N)/S R_L =32 Ω (Note 2)		-65	-60	dB
Signal Ratio		(THD+N)/S			0.05	0.1	%
Signal to Noise Ratio		S/N		90	100		dB
Unity Gain Frequency		FG	$R_L=5k\Omega$		5		MHz
Max.Output Power		Роит	(THD+N)/S<0.1%		84		mW
Input Capacitance		Cı	,		3		PF
Power Bandwidth		В	Unity Gain Inverting		20		kHz

Notes: 1. Values are proportional to V_{DD};(THD+N)/S<0.1%

2. $V_{DD}=5V$; $V_{OUT(P-P)}=3.5V(at 0dB)$




TYPICAL APPLICATION



■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.