UTC UNISONIC TECHNOLOGIES CO., LTD

SK1816A

LINEAR INTEGRATED CIRCUIT

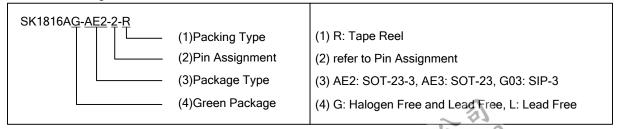
BIPOLAR LATCH TYPE HALL EFFECT FOR HIGH-TEMPERATURE **OPERATION**

DESCRIPTION

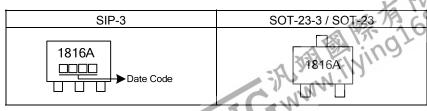
The UTC SK1816A is a semiconductor integrated circuit utilizing the Hall effect. It designed to operate in the alternating magnetic field especially at low supply voltage and operation over extended temperature ranges to +125°C.

This Hall IC is suitable for application to various kinds of sensors. contact-less switches, such as Speed sensor, Position sensor, Rotation sensor, Contact-less sensor, and Motor control.

SOT-23-3 SOT-23 (JEDEC TO-236) (EIAJ SC-59) SIP-3

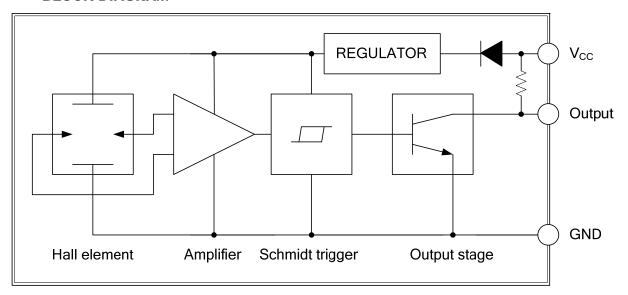

FEATURES

- * Wide Supply Voltage Range of 2.5V to 20V
- * Wide Temperature Operation Range of -30°C ~+125°C
- * Alternating Magnetic Field Operation
- * Built-in Protection Diode
- * TTL and MOS IC are Directly Drivable by the Output
- * The life is Semi Permanent because it Employs Contact-Less Parts


ORDERING INFORMATION

Ordering Number		Packago	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
SK1816AL-AE2-2-R	SK1816AG-AE2-2-R	SOT-23-3	0	I	G	Tape Reel	
SK1816AL-AE3-R	SK1816AG-AE3-R	SOT-23	I	0	G	Tape Reel	
SK1816AL-G03-B	SK1816AG-G03-B	SIP-3	I	G	0	Tape Box	
SK1816AL-G03-K	SK1816AG-G03-K	SIP-3	I	G	0	Bulk	

Note: Pin Assignment: O: V_{OUT} I: V_{CC} G: GND



MARKING

www.unisonic.com.tw 1 of 5

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified.)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		Vcc	2.5~20	V
Supply Current		Icc	10	mA
Circuit Current		lo	20	mA
Power Dissipation	SOT-23-3 SOT-23	P _D	200	mW
	SIP-3		400	mW
Operating Temperature		T_OPR	-30 ~ +125	°C
Storage Temperature		T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT	
Low-Level Output Voltage		V _{CC} = 16V, I _{OUT} =12mA, B=30 mT		0.2	0.7	V	
		V _{CC} =3.6V, I _{OUT} =12mA, B=30 mT		0.3	0.7	V	
Output Leakage Current	I _{LEAK}	V _{CC} =16V, B=-30 mT		1	10	μA	
Supply Current	Icc	V _{CC} =16V		6	10	mA	
		V _{CC} =3.6V		5.5	10	mA	
Output Switching Time	T_R	V_{CC} =16V, R_L =10K Ω , C_L =10pF			5	μS	
	T_F	V_{CC} =16V, R_L =10K Ω , C_L =10pF			1	μS	
MAGNETIC CHARACTERISTICS							
Operate Point	B _{OP}	At T _A =25°C			5	mT	
Release Point	B_RP	At T _A =25°C			-5	mT	
Hysteresis	B _{HYS}	At T _A =25°C		5.5	10	mT	

Note: 1. Bop=operate point (output turns ON); BRP =release point (output turns OFF); BHYS =hysteresis(Bop – BRP). As used here, negative flux densities are defined as less than zero (algebraic convention). Typical values are at T_A=25°C and Vcc=12V.

2. 1mT=10 gauss

PACKAGE INFORMATION

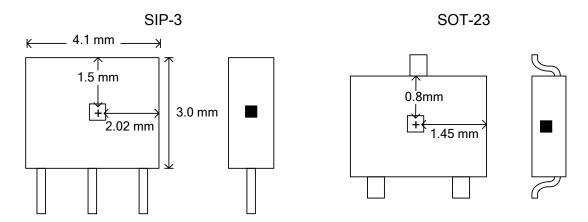


Fig. 1 SENSOR LOCATIONS

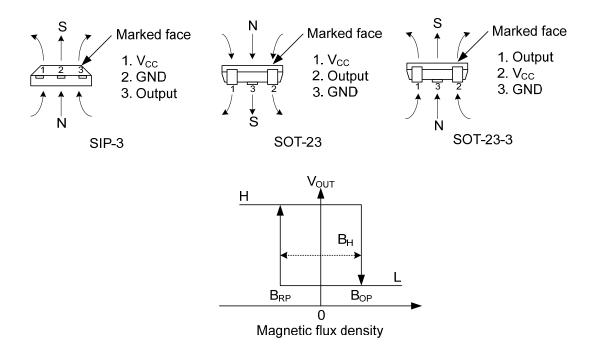
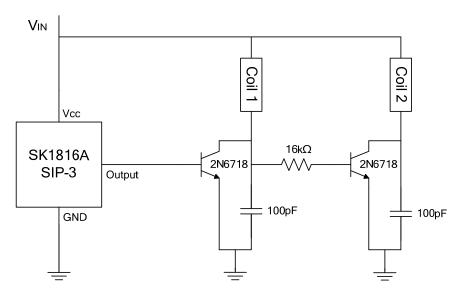
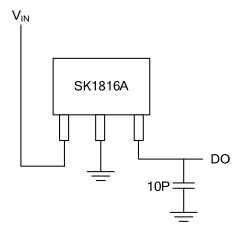



Fig. 2 APPLYING DIRECTION OF MAGNETIC FLUX


UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

■ TYPICAL APPLICATION CIRCUIT

FOR DC FAN 1

■ TEST CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.