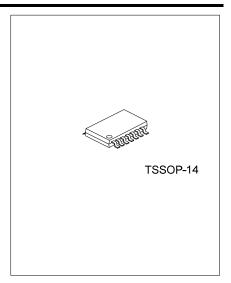
U74CBTLV3125 **CMOS IC**

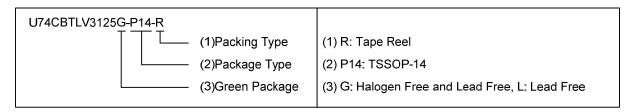

LOW-VOLTAGE QUADRUPLE **FET BUS SWITCH**

DESCRIPTION

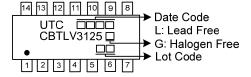
The U74CBTLV3125 quadruple FET bus switch features independent line switches. Each switch is disabled when the associated output-enable (\overline{OE}) input is high.

The device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

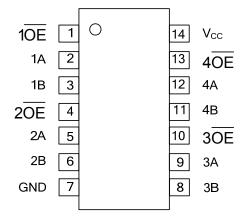


FEATURES


- * 5-Ω Switch Connection Between Two Ports
- * Standard '125-Type Pinout
- * Isolation Under Power-Off Conditions

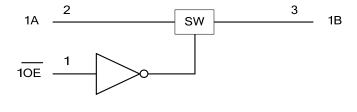
ORDERING INFORMATION

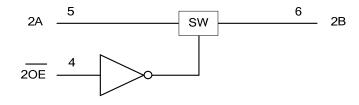
Ordering	Number	Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
U74CBTLV3125L-P14-R	U74CBTLV3125G-P14-R	TSSOP-14	Tape Reel	

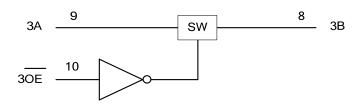


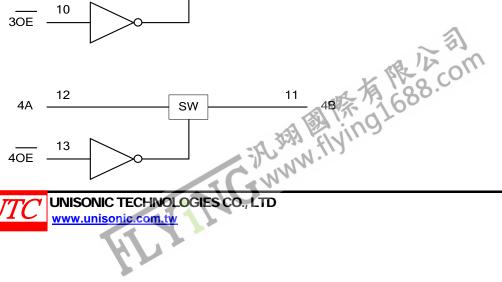
MARKING

Chumital 1888.com www.unisonic.com.tw 1 of 6 QW-R502-959.B

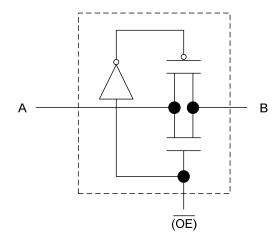

PIN CONFIGURATION




FUNCTION TABLE (each bus switch)


INPUT OE	FUNCTION	
L	A port = B port	
Н	Disconnect	

LOGIC DIAGRAM (positive logic)



SIMPLIFIED SCHEMATIC (each FET switch)

■ ABSOLUTE MAXIMUM RATING (unless otherwise specified)(Note 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{CC}	-0.5~4.6	V
Input Voltage	V_{l}	-0.5~4.6	V
Continuous channel current		128	mA
Input Clamp Current(V _{I/O} <0)	I _{IK}	-50	mA
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	113	°C/W

■ RECOMMENDED OPERATING COMDITIONS

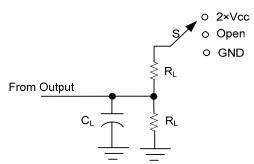
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Supply Voltage	V_{CC}		2.3		3.6	V	
Lligh control input voltage	V	V _{CC} =2.3V~2.7V	1.7			V	
High-control input voltage	V _{IH}	V _{CC} =2.7V~3.6V	2				
Law control input voltage	V	V _{CC} =2.3V~2.7V			0.7	\ \	
Low-control input voltage	V _{IL}	V _{CC} =2.7V~3.6V			0.8]	
Operating Temperature	T _A		-40		-85	°C	

Note: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

■ STATIC CHARACTERISTICS

		T						
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Digital Input Diode Voltage	V_{IK}	V_{CC} =3V, I_I =-18mA					-1.2	٧
Input Leakage Current	I _I	V _{CC} =3.6V, V _I =V _{CC} or GND				±1	μΑ	
Power off Leakage Carrent	I _{off}	$V_{CC}=0, V_I \text{ or } V_O=0 \text{ to}$	4.5V				10	μA
Quiosceut Supply Current	I _{CC}	V_{CC} =3.6V, V_{I} = V_{CC} o	or GND, I _O =0)			10	μA
Additional Quiescent Supply Control inputs Current	/\lcc	V _{CC} =3.6V, One input at 3V, Other inputs at V _{CC} or GND				300	μA	
Control input Capacitance	Cı	V _O =3V or 0			2.5		pF	
I/O Capacitance (OFF)	C _{IO(OFF)}	V _O =3V or 0, OE=GND			7		pF	
		V 0.0V	V/ =0	I _I =64mA		5	8	
		V _{CC} =2.3V	V _I =0	I _I =24mA		5	8	
Resistor between two ports $R_{ON} = \frac{117P \text{ at } V_{CC}=2.5V}{V_{CC}=3V}$	TYP at V _{CC} =2.5V	V _I =1.7V	I _I =-15mA		27	40		
	K _{ON}			I _I =64mA		5	7	Ω
		V _{CC} =3V	V _I =0V	I _I =24mA		5	7	
	V _I =2.4V	I _I =-15mA		10	15			

Note: All typical values are at V_{CC} =3.3V, T_{A} =25°C, unless otherwise noted.


■ DYNAMIC CHARACTERISTICS

See Fig. 1 and Fig. 2 for test circuit and waveforms.

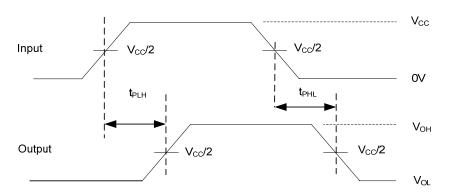
200 i ig. i dina i ig. 2 ioi toot onodit dina matoromio.						
SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
+ / + /+ \	V _{CC} =2.5V±0.2V),,		0.35		
Lpd (LPLH/LPHL)	V _{CC} =3.3V±0.3V			0.25	ns	
I I IDZI /IDZI I	V _{CC} =2.5V±0.2V	2		4.6		
	V _{CC} =3.3V±0.3V	2		4.4		
1 7 July 1	V _{CC} =2.5V±0.2V	1.1		3.9	ns	
Idis (IPLZ/IPHZ)	V _{CC} =3.3V±0.3V	1.0		4.2		
	SYMBOL t _{pd} (t _{PLH} /t _{PHL}) t _{en} (t _{PZL} /t _{PZH})	$\begin{array}{c c} \text{SYMBOL} & \text{TEST CONDITIONS} \\ \hline t_{pd} \ (t_{PLH}/t_{PHL}) & V_{CC} = 2.5 \lor \pm 0.2 \lor \\ \hline V_{CC} = 3.3 \lor \pm 0.3 \lor \\ \hline t_{en} \ (t_{PZL}/t_{PZH}) & V_{CC} = 3.3 \lor \pm 0.2 \lor \\ \hline V_{CC} = 3.3 \lor \pm 0.2 \lor \\ \hline V_{CC} = 2.5 \lor \pm 0.2 \lor \\ \hline $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

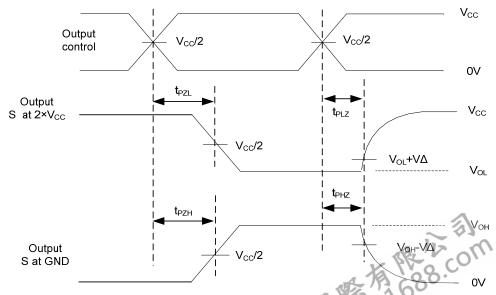
■ TEST CIRCUIT AND WAVEFORMS

V _{CC}	R_L	CL	VΔ
2.5V±0.2V	500	30pF	0.15V
3.3V±0.3V	500	50pF	0.3V

TEST	S
t _{PD}	Open
t _{PHZ} /t _{PZH}	GND
t _{PLZ} /t _{PZL}	2×Vcc


Note: C_L includes probe and jig capacitance.

 t_{PLZ} and t_{PHZ} are the same as $t_{\text{dis}}.$


 t_{PZL} and t_{PZH} are the same as $t_{\text{en}}.$

 t_{PLH} and t_{PHL} are the same as t_{PD} .

Fig. 1 Load circuitry for switching times.

PROPAGATION DELAY TIMES

ENABLE AND DISABLE TIMES

Note: All input pulses are supplied by generators having the following characteristics: t_r , $t_f \le 2ns$; PRR $\le 10MHz$; ZO= 50Ω .

Fig. 2 Propagation delay from input(A) to output(B) and Output transition time.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

