U74HCT165 **CMOS IC**

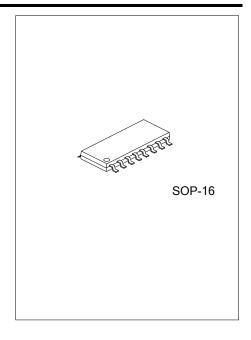
8-BIT PARALLEL-LOAD SHIFT REGISTER

DESCRIPTION

The U74HCT165 is an 8-bit parallel-load shift register that, when clocked, shifts the data toward a serial (Q_H) output. Parallel-in access to each stage is provided by eight individual direct data (A-H) inputs these are enabled by a low level at shift/load (SH/LD) input. The U74HCT165 also features a clock-inhibit (CLK INH) function and a complementary serial (\overline{Q}_H)

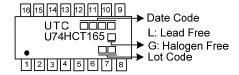
Clocking is accomplished by a low-to-high transition of the clock (CLK) input while SH/LD is held high and CLK INH is held low. The functions of CLK and CLK INH are interchangeable. Since a low CLK and a low-to-high transition of CLK INH also accomplish clocking, CLK INH should be changed to the high level only while CLK is high. Parallel loading is inhibited when SH/LD is held high. While SH/LD is low, the parallel inputs to the register are enabled independently of the levels of the CLK, CLK INH, or serial (SER) inputs.

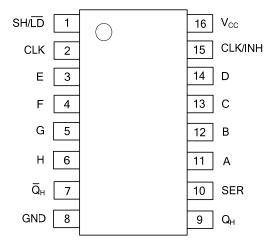
The inputs are compatible with TTL,NMOS and CMOS output voltage levels.



- * Complementary Outputs
- * Direct Overriding Load (Data) Inputs
- * Gated Clock Inputs
- * Parallel-to-Serial Data Conversion
- * Compatible with TTL, NMOS, CMOS output voltage levels

ORDERING INFORMATION


Ordering	Ordering Number			
Lead Free	Halogen Free	Package Packing		
U74HCT165L-S16-R	U74HCT165G-S16-R	SOP-16	Tape Reel	



U74HCT165 **CMOS IC**

MARKING

PIN CONFIGURATION

FUNCTION TABLE

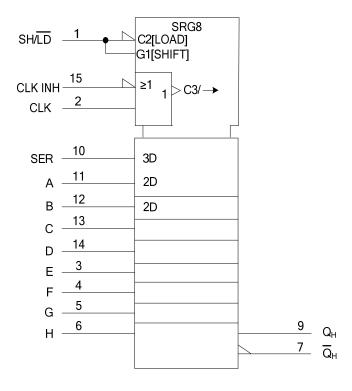
		Inputs					egisters	Out	outs
Operating Modes	SH/LD	CLK/INH	CLK	SER	A to H	Q0	Q1 to Q6	Q_H	\overline{Q}_H
Parallel Load	L	Х	Х	Х	L	L	L to L	L	Н
Parallel Load	L	Χ	Χ	X	Η	Η	H to H	Η	L
Serial Shift	Н	L	1	I	Х	L	q0 to q 5	q6	_ q6
	Н	L	1	h	X	Н	q0 to q 5	q6	_ q6
	Н	1	L	I	X	L	q0 to q 5	q6	_ q6
	Н	↑	L	h	X	Н	q0 to q 5	q6	_ q6
11.1.1.4.F. N. 11.1	Н	Н	Χ	Х	Х	Q0	q1 to q6	q7	_ q7
Hold "Do Nothing"	Н	Х	Н	Х	Х	Q0	q1 to q6	q7	_ q7

Notes: H=HIGH Voltage Level;

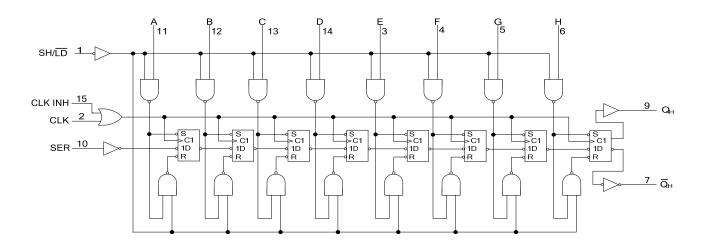
h= HIGH Voltage Level one set-up time prior to the LOW-to-HIGH clock transition;

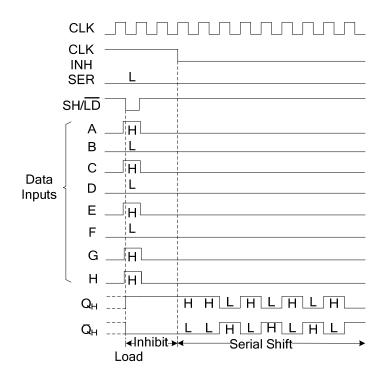
L=LOW Voltage Level;

I= LOW Voltage Level one set-up time prior to the LOW-to-HIGH clock transition;


q=state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition;

X=don't care;


↑= LOW-to-HIGH clock transition.


■ LOGIC SYMBOL

■ LOGIC DIAGRAM (positive logic)

TYPICAL SHIFT, LOAD, AND INHIBIT SEQUENCE

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.5 ~ 7	V
V _{CC} or GND Current	Icc	±50	mA
Output Current	I _{OUT}	±25	mA
Input Clamp Current	I _{IK}	±20	mA
Output Clamp Current	l _{ok}	±20	mA
Storage Temperature	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V _{CC}		4.5	5	5.5	V
High level Input Voltage	V	V _{CC} =4.5V	2			V
High-level Input Voltage	V _{IH}	V _{CC} =5.5V	2			٧
Low level Input Voltage	V _{II} V _C	V _{CC} =4.5V			0.8	٧
Low-level Input Voltage	VIL	V _{CC} =5.5V			0.8	٧
Input Voltage	V _{IN}		0		Vcc	٧
Output Voltage	V _{OUT}		0		Vcc	٧
Input Transition (Rise and Fall) Time	t _t	V _{CC} =4.5V			500	ns
Operating Free-air Temperature	T _A		-40		+125	°C

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	73	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

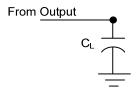
PARAMETER	SYMBOL	TEST CONDITIONS	TYP	MAX	UNIT	
Output Voltage High Lovel	tput Voltage High-Level tput Voltage Low-Level Vol tut Leakage Current iescent Supply Current Icc	V _{CC} =4.5V, I _{OH} =-20μA	4.4	4.5		V
Output Voltage High-Level	V ОН	$V_{OH} = \begin{array}{c} V_{CC} = 4.5 \text{V}, \ I_{OH} = -20 \mu A \\ V_{CC} = 4.5 \text{V}, \ I_{OH} = -4 \text{mA} \\ V_{OL} = \begin{array}{c} V_{CC} = 4.5 \text{V}, \ I_{OH} = -4 \text{mA} \\ V_{CC} = 4.5 \text{V}, \ I_{OL} = 20 \mu A \\ V_{CC} = 4.5 \text{V}, \ I_{OL} = 4 \text{mA} \\ V_{CC} = 4.5 \text{V}, \ I_{OL} = 4 \text{mA} \\ \end{array} = \begin{array}{c} 0.1 \\ 0.$	4.32		V	
Output Voltage Low-Level	Vai	V_{CC} =4.5V, I_{OL} =20 μ A		0	0.1	V
Output Vollage Low-Level	VOL	V _{CC} =4.5V, I _{OL} =4mA	.5V, I _{OH} =-4mA 3.98 4.32 0 0.1 .5V, I _{OL} =20μA 0 0.15 0.26 .5V, I _{OL} =4mA 0.15 0.26 .5V, V _{IN} = V _{CC} or GND ±100 8 .5V, V _{IN} =V _{CC} or GND 35 126 .5V, V _{IN} =V _{CC} or GND 35 126 .5V, V _{IN} =V _{CC} or GND 35 126 .5V, V _{IN} =V _{CC} or GND, 0 0.15 0.26 .5V, V _{IN} =V _{CC} or GND 35 126 .5V, V _{IN} =V _{CC} or GND, 0 0.15 0.26 .5V, V _{IN} =V _{CC} or GND, 0 0.26 .5V, V _{IN} =V _{CC} or GND, 0 0.26 .5V,	V		
Input Leakage Current	I _{I(LEAK)}	V_{CC} =5.5V, V_{IN} = V_{CC} or GND			±100	nA
Quiescent Supply Current	I _{CC}	V_{CC} =5.5V, V_{IN} = V_{CC} or GND			8	μΑ
			35	126	uA	
Additional supply current	△ICC	V _{CC} =4.5V to 5.5V,		65	0.26 ±100 8	uA
Input Capacitance	Cı			3.5		pF

U74HCT165 **CMOS IC**

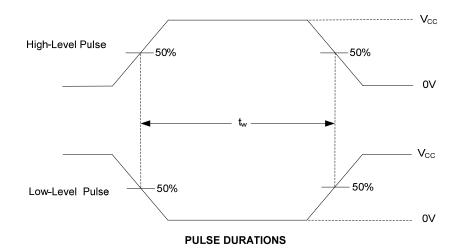
TIMING REQUIREMENTS (T_A =25°C, unless otherwise specified)

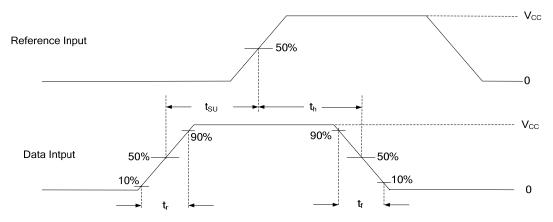
	PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Clock frequency		£	V _{CC} =4.5V	26	44		MHz
Clock frequency		f _{CLOCK}	V _{CC} =5V, C _L =15pF		48		MHz
Dulas duration	CLK high input		V _{CC} =4.5	16	6		ns
Pulse duration	SH/ LD low input	t _W	V _{CC} =4.5V	20	9		ns
	DS before CLK,CLK INH		V _{CC} =4.5V	20	2		ns
Setup time	CLK INH to CLK, CLK to CLK INH	t _{SU}	V _{CC} =4.5V	20	7		ns
	Dn to SH/LD		V _{CC} =4.5V	20	10		ns
Hold time	DS to CLK, CLK INH	4	V _{CC} =4.5V	7			ns
Hold time	CLK to CLK INH, CLK INH to CLK	t _h	V _{CC} =4.5V	0			ns

SWITCHING CHARACTERISTICS ($t_r = t_f = 6$ ns, $C_L = 50$ pF, $T_A = 25$ °C, unless otherwise specified)

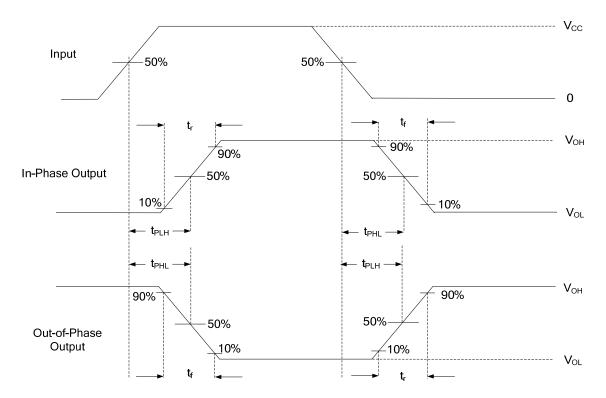

PARAMETER	SYMBOL	Condition	MIN	TYP	MAX	UNIT
Propagation delay FROM SH/LD to QH or QH		V _{CC} =4.5V		20	40	ns
Tropagation delay r Now Still ED to Qiri or Qi		V _{CC} =5V, C _L =15pF		17		Ns
Propagation delay FROM CLK, CLK, INH to QH or	4	V _{CC} =4.5V		17	40	Ns
\overline{Q}_{H}	t _{PD}	V _{CC} =5V, C _L =15pF		14		Ns
Propagation delay FROM D7 to QH or Q _H		V _{CC} =4.5V		14	35	Ns
Tropagation delay rivolvi D7 to Q11 or QH		V _{CC} =5V, C _L =15pF		11		ns
FROM QH or QH	t _t	V _{CC} =4.5V		7	15	ns

OPERATING CHARACTERISTICS (T_A =25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Dissipation Capacitance	C_{PD}	No load		35		рF



■ TEST CIRCUIT AND WAVEFORMS


TEST CIRCUIT

SET AND HOLD AND INPUT RISE AND FALL TIMES

■ TEST CIRCUIT AND WAVEFORMS (Cont.)

PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.