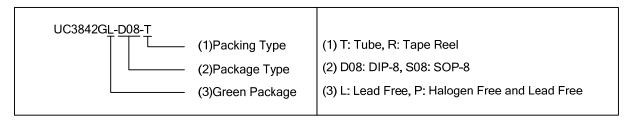

UC3842G

LINEAR INTEGRATED CIRCUIT

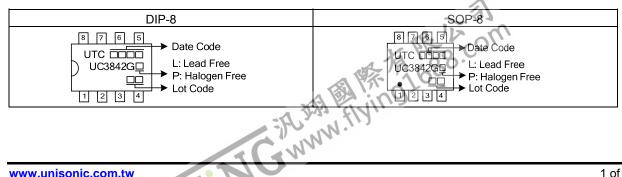
HIGH PERFORMANCE **CURRENT MODE** CONTROLLER

DESCRIPTION

The UTC UC3842G of high performance current mode controller is specifically designed for off-line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. This integrated circuit features approximately 40µA start up current, a precision reference trimmed the error amplifier input. Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and so on.

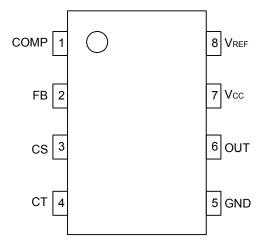


FEATURES


- * Low startup and operating current
- * User defined switching frequency(Norm is 52kHz)
- * Power-saving mode for low power
- * Under voltage lockout with hysteresis
- * Over voltage protection
- * Latching PWM for Cycle-By-Cycle current limiting
- * Internally trimmed reference with undervoltage lockout

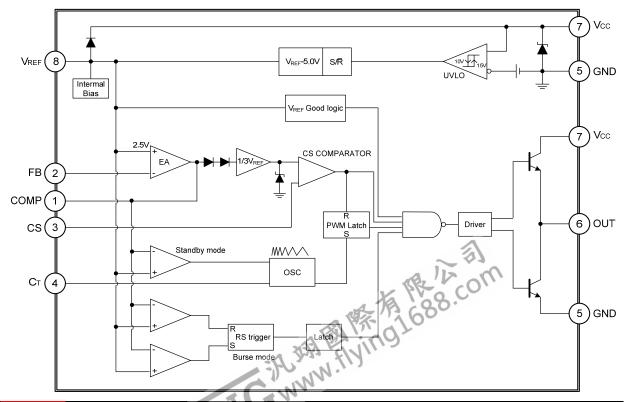
ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
UC3842GL-D08-T	UC3842GP-D08-T	DIP-8	Tube	
UC3842GL-S08-R	UC3842GP-S08-R	SOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 7


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	Function
1	COMP	0	This pin is error amplifier output
2	FB	ļ	The error amplifier inverting input
3	CS	ļ	Current sense input
4	CT	ļ	The capacitor controlling switch frequency
5	GND		Ground
6	OUT	0	Output to the gate of external power MOS
7	V_{CC}		Supply voltage
8	V_{REF}	0	Inter 5V reference voltage output

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage (Low Impedance Source)	V _{CC}	30	V
Supply Voltage (I _{CC} <30mA)	V _{CC}	Self Limiting	V
Output Current (Peak)	I _{O(PEAK)}	±1	Α
Output Energy (Capacity load)		5	μJ
Junction Temperature	T_J	+150	°C
Operating Temperature	T_OPR	-40 ~ +125	°C
Storage Temperature	T _{STG}	-65 ~ + 150	°C

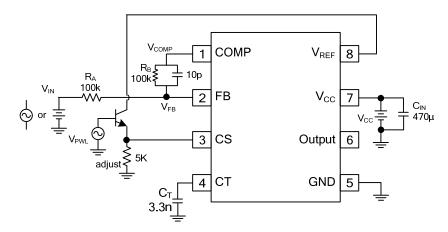
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

(0°C \leqslant T_A \leqslant 70°C, V_{CC}=15V, C_T=3.3nF, unless otherwise specified)

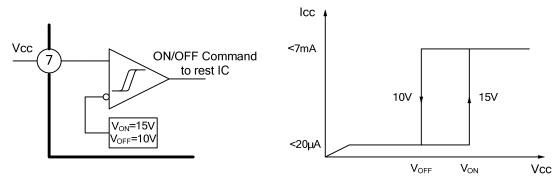
$\begin{array}{c} \text{SYMBOL} \\ \\ \text{V_{COMP}} \\ \\ \text{V_{REF}} \\ \\ \Delta V_{\text{REF}} \\ \\ I_{\text{SC}} \\ \end{array}$	Right load I _{OUT} =1.0mA 12V≤V _{CC} ≤25V I _{OUT} =1.0mA to 20mA	4.95	2.2 5.0	MAX	V
V_{REF} ΔV_{REF}	I _{OUT} =1.0mA 12V≤V _{CC} ≤25V	4.95	1		V
V_{REF} ΔV_{REF}	I _{OUT} =1.0mA 12V≤V _{CC} ≤25V	4.95	1		V
ΔV_{REF} ΔV_{REF}	12V≤V _{CC} ≤25V	4.95	5.0	1	-
ΔV_{REF} ΔV_{REF}	12V≤V _{CC} ≤25V	4.95	5.0		
ΔV_{REF}			0.0	5.05	V
	IOUT=1.0mA to 20mA		3	20	mV
lec	1 00, 110111111		8	25	mV
•30		-30	-65	-180	mA
			_	_	
f	T _J =25°C	47	52	57	kHz
$\Delta f_{OSC}/\Delta V$	12V≤V _{CC} ≤25V		0.2	1.0	%
V _{OSC(P-P)}			1.6		V
			1.2		V
Vosch			2.8		V
			•		
V _{I(EA)}	V _{COMP} =2.5V	2.42	2.50	2.58	V
	V _{FB} =5V		-0.3	-2	μA
, ,	2V≤V _{OUT} ≤4V	60	90		dB
	T _J =25°C(Note1)	0.7	1		MHz
	12V≤V _{CC} ≤25V	60	70		dB
I _{SINK}	V _{FB} =2.7V, V _{COMP} =1.1V	2	4		mA
I _{SOURCE}	V _{FB} =2.3V, V _{COMP} =5V	-0.5	1		mA
V _{OH}	V _{FB} =2.3V, R _L =15K to GND	5.0	5.6		V
			0.8	1.1	V
G∨	(Note2,3)	2.85	3	3.15	V/V
$V_{I(MAX)}$	V _{COMP} =5V(Note2)	0.9	1	1.1	V
	12V≤V _{CC} ≤25V		70		dB
I _{BIAS}			-2	-10	μΑ
			150	300	nS
- jA	WW.flying1688.	om			
UTC UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw					3 of 7
	VOSC(P-P) VOSCL VOSCH VI(EA) II(BIAS) ISINK ISOURCE VOH VOL GV VI(MAX)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOSC(P-P) 1.6 VOSCL 1.2 VOSCH 2.8 VI(EA) VCOMP=2.5V 2.42 2.50 2.58 II(BIAS) VFB=5V -0.3 -2 2V≤VOUT≤4V 60 90 -0.7 1 12V≤VCc≤25V 60 70 1 ISINK VFB=2.7V, VCOMP=1.1V 2 4 ISOURCE VFB=2.3V, VCOMP=5V -0.5 1 VOH VFB=2.3V, RL=15K to GND 5.0 5.6 VOL VFB=2.7V, RL=15K to VREF 0.8 1.1 GV (Note2,3) 2.85 3 3.15 VI(MAX) VCOMP=5V(Note2) 0.9 1 1.1 12V≤VCC≤25V 70 -2 -10 IBIAS -2 -10 150 300

ELECTRICAL CHARACTERISTICS (Cont.)


PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
OUTPUT SECTION						
Output Voltage With LIVI O Active		V _{CC} =6V,I _{SINK} =0.1mA;		0.8	1.1	V
Output Voltage With UVLO Active	$V_{OL(UVLO)}$	V _{CC} =7.5V,I _{SINK} =1mA		0.6	1.1	V
	V _{OL}	I _{SINK} =20mA		0.1	0.4	V
Output Voltage		I _{SINK} =200mA		1.6	2.2	V
	\/	I _{SOURCE} =20mA	13	14.5		V
	V _{OH}	I _{SOURCE} =200mA	12	14.6		V
Output Voltage Dies and Fall time	t _R	C _L =1.0nF (Note 1)		100	150	nS
Output Voltage Rise and Fall time	t _F	C _L =1.0nF (Note 1)		100	150	
UNDER VOLTAGE LOCKOUT SECTIO	N					
Startup Threshold	V _{TH(STAR-UP)}		13.5	15	16.5	V
Min Operating Voltage	V _{OPR(MIN)}	After Turn-ON	8.5	10	11.5	V
PWM SECTION						
Max Duty Cycle	D_{MAX}		92	94		%
Minimum Duty Cycle	D _{MIN}				0	%
TOTAL DEVICE						
Power Supply Zener Voltage	Vz	I _{CC} =25mA	30	39		V
Power Operating Supply Current	I _{CC}	Note 2		7	10	mA
Startup Current	I _{START-UP}	V _{CC} =14V, UVLO Active		15	40	μA
			•	•	•	*

Notes: 1. These parameters, although guaranteed, are not 100% tested in production.

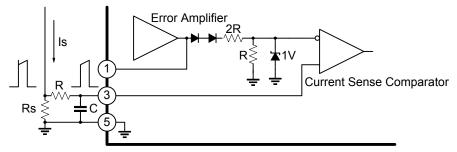
- 2. Parameters measured at trip point of latch with V_{FB}=0.
- 3. Gain defined as: A= \triangle V_{COMP}/ \triangle V_{CS}; $0 \le$ V_{CS} \le 0.8V



OPEN-LOOP TEST CIRCUIT

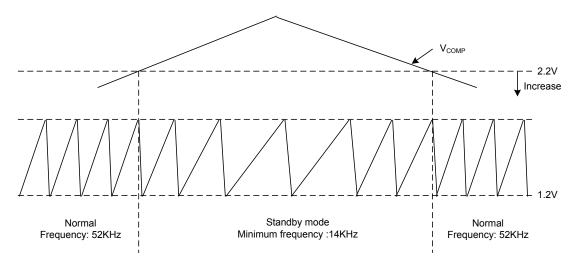
High peak current associated with capacity loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin5 in single point GND.

UNDER-VOLTAGE LOCKOUT

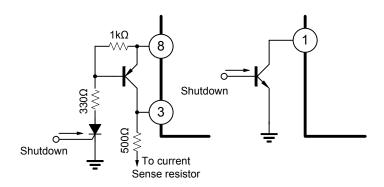

During Under-Voltage Lockout, the output driver is biased to a high impedance state. Pin 6 should be shunt to GND with a bleeder resistor to prevent activing the power switch with output leakage currents.

ERROR AMPLIFIER CONFIGURATION

Error amplifier can source or sink up to 0.5mA


CURRENT SENSE CIRCUIT

Peak current (I_S) determined by the formula: I_{SMAX}=1V/Rs. A small RC filter be required to suppress switch transients.


OSCILLATOR AND STANDBY MODE

We can judge the state of output load through the voltage of Pin 1. In order to reduce the standby power, it will reduce the OSC frequency at right load. When V_{COMP}≤2.2V, the OSC frequency begins to reduce. The normal frequency is 52KHz, the minimum frequency is 22KHz.

OSC triangle wave

■ SHUTDOWN TECHNIQUE

Shutdown UTC **UC3842G** can be accomplished by two methods; either raise pin 3 above 1V or pull Pin 1 below a voltage two diode drops above ground.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.