UD05151

Preliminary

LINEAR INTEGRATED CIRCUIT

1.5A, HIGH-EFFICIENCY 1.5MHz SYNCHRONOUS STEP-DOWN CONVERTER

DESCRIPTION

The UTC **UD05151** is a high-frequency, synchronous, rectified, step-down, switch-mode converter with internal power MOSFETs.

It offers a very compact solution to achieve a 1.5A continuous output current over from 3.0V to 5.5V input supply range, with excellent load and line regulation.

The UTC UD05151 is ideally suited for portable electronic devices that are powered from 1-cell Li-ion battery or from other power sources such as cellular phones, PDAs, handheld devices, game console and related accessories.

The output voltage is adjustable from 0.6V to the input voltage. During shutdown, the input is disconnected from the output and the shutdown current is less than 1µA. Other key features include over-temperature and short circuit protection, and under-voltage lockout to prevent deep battery discharge.

The UTC UD05151 at 1.5A maximum output current while consuming only 80µA of no-load quiescent current. Ultra-low R_{DS(ON)} integrated MOSFET_s and 100% duty cycle operation make the UTC UD05151 an ideal choice for high-output voltage, high-current applications which require a low dropout threshold.

* Output Current : Up to 1.5A * Output Voltage: 0.6V to VIN * Input Voltage: 3.0V to 5.5V

* Low-R_{DS(ON)} Internal Power MOSFETs

* High-Efficiency Synchronous-Mode Operation, up to 90%

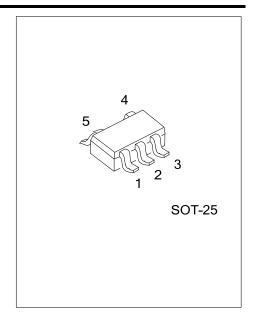
* 80uA (typ) No Load Quiescent Current

* Shutdown Current < 1µA

* 100% Duty Cycle Operation

* Fixed 1.5MHz Switching Frequency

* Internal Power-Save Mode for High Efficiency at Light Load


* Current Mode Operation

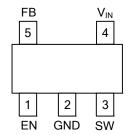
* Internal Soft-Start

* Current Limit Protection

* Over-temperature Protection

* Input Under Voltage Lockout (UVLO)

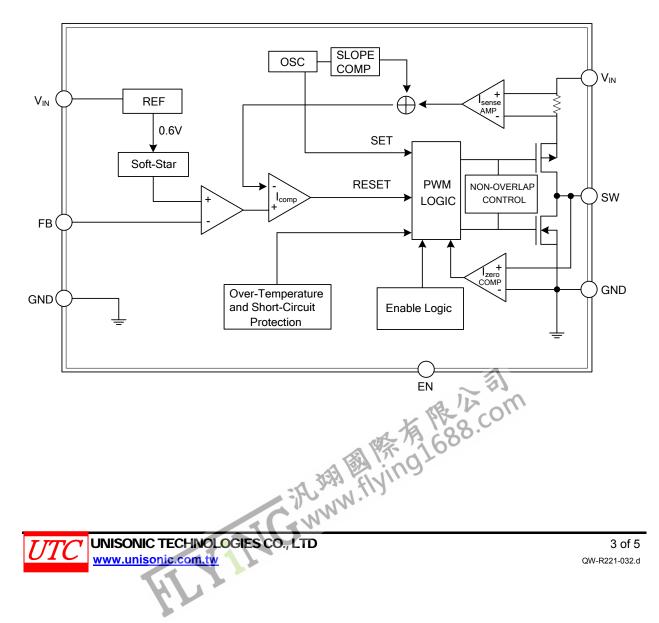
ORDERING INFORMATION


Ordering Number		Dookogo	Docking	
Lead Free	Halogen Free	Package	Packing	
UD05151L-AF5-R	UD05151G-AF5-R	SOT-25	Tape Reel	

(2)Package Type	(1) R: Tape Reel (2) AF5: SOT-25 (3) G: Halogen Free and Lead Free, L: Lead Free
-----------------	--

MARKING

5		4
	DE51	
1	2	3


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	EN	Enable control. Pull high to turn on. Do not float
2	GND	Ground pin
3	SW	Inductor pin. Connect this pin to the switching node of inductor
4	V_{IN}	Input pin. Decouple this pin to GND pin with at least 1uF ceramic cap
5	FB	Output Feedback Pin. Connect this pin to the center point of the output resistor divider to program the output voltage: VouT=0.6×(1+R1/R2).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Input Voltage	V_{IN}	6.0	V
SW Pin Voltage	V_{SW}	V _{IN} +0.3	V
FB Pin Voltage	V_{FB}	V _{IN} +0.3	V
EN Pin Voltage	V_{EN}	6.0	V
Power Dissipation	P_{D}	0.38	W
Maximum Junction Temperature Range	T_J	+125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Stresses exceed those ratings may damage the device.

RECOMMENDED OPERATING CONDITIONS

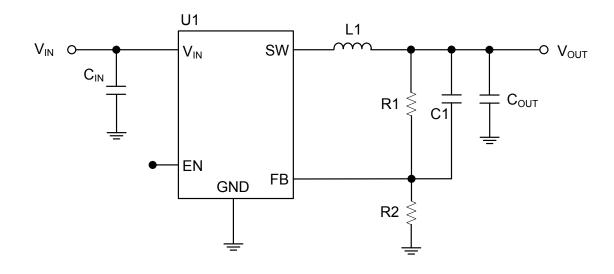
PARAMETER	SYMBOL	RATINGS	UNIT
			3,4
Supply Input Voltage	V _{IN}	3.0 ~ 5.5	V
Output Voltage	V_{OUT}	0.6 ~ V _{IN}	V
Operating Junction Temperature Range	TJ	-40 ~ +125	°C
Operating Ambient Temperature Range	T _A	-40 ~ +85	°C

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	170	°C/W	
Junction to Case	θ_{JC}	130	°C/W	

ELECTRICAL CHARACTERISTICS

 $(V_{IN}=5.0V, T_A=25^{\circ}C, V_{OLIT}=2.5V, C_{IN}=33uF, C_{OLIT}=10uF, L=2.2uH$ unless otherwise specified.)


$\{V_{\text{IN}}=3.0V, T_{\text{A}}=2.5V, V_{\text{OU}}=2.5V, C_{\text{IN}}=3.0U, C_{\text{OU}}=1.0U, L=2.2UT utiless otherwise specified.)$								
SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
V_{IN}		3		5.5	V			
ΙQ	V_{EN} = 2V, V_{FB} = 1.0V, No Load		80		uA			
I _{SHDN}	$V_{EN} = 0V.$		0.1	1	μΑ			
HS _{RDS-ON}	I _{SW} = 0.2A		200		mΩ			
	I _{SW} = 0.2A		150		mΩ			
I _{LIMIT(HS)}		1.8			Α			
F _{SW}	lout = 200mA		1.5		MHz			
V_{FB}	T _A = 25°C	0.588	0.6	0.612	V			
I _{FB}	$V_{OUT} = V_{IN}$		50		nA			
V _{EN_RISING}		1.5			V			
				0.4	V			
V_{UVLO-H}	V _{IN} Rising		1.8		V			
V _{UVLO} -HYS			0.1		V			
			50		nS			
T _{SS}	From enable to output regulation		1.5		mS			
T _{SD}		1	160		ů			
	SYMBOL VIN IQ ISHDN HSRDS-ON LSRDS-ON ILIMIT(HS) FSW VFB IFB VEN_RISING VEN_FALLING VUVLO-HYS TSS	$\begin{array}{c c} \text{SYMBOL} & \text{TEST CONDITIONS} \\ \hline V_{\text{IN}} & \\ \hline I_{\text{Q}} & V_{\text{EN}} = 2\text{V}, V_{\text{FB}} = 1.0\text{V}, \text{No Load} \\ \hline I_{\text{SHDN}} & V_{\text{EN}} = 0\text{V}. \\ \hline HS_{\text{RDS-ON}} & I_{\text{SW}} = 0.2\text{A} \\ \hline LS_{\text{RDS-ON}} & I_{\text{SW}} = 0.2\text{A} \\ \hline I_{\text{LIMIT(HS)}} & \\ \hline F_{\text{SW}} & \text{lout} = 200\text{mA} \\ \hline V_{\text{FB}} & T_{\text{A}} = 25^{\circ}\text{C} \\ \hline I_{\text{FB}} & V_{\text{OUT}} = V_{\text{IN}} \\ \hline V_{\text{EN_RISING}} & \\ \hline V_{\text{UVLO-H}} & V_{\text{IN}} \text{Rising} \\ \hline V_{\text{UVLO-HYS}} & \\ \hline T_{\text{SS}} & \text{From enable to output regulation} \\ \hline \end{array}$	$\begin{array}{c c} \text{SYMBOL} & \text{TEST CONDITIONS} & \text{MIN} \\ \hline V_{\text{IN}} & 3 \\ \hline I_{\text{Q}} & V_{\text{EN}} = 2\text{V}, V_{\text{FB}} = 1.0\text{V}, \text{No Load} \\ \hline I_{\text{SHDN}} & V_{\text{EN}} = 0\text{V}. \\ \hline HS_{\text{RDS-ON}} & I_{\text{SW}} = 0.2\text{A} \\ \hline LS_{\text{RDS-ON}} & I_{\text{SW}} = 0.2\text{A} \\ \hline I_{\text{LIMIT(HS)}} & 1.8 \\ \hline F_{\text{SW}} & \text{lout} = 200\text{mA} \\ \hline V_{\text{FB}} & T_{\text{A}} = 25^{\circ}\text{C} & 0.588 \\ \hline I_{\text{FB}} & V_{\text{OUT}} = V_{\text{IN}} \\ \hline V_{\text{EN_RISING}} & 1.5 \\ \hline V_{\text{EN_FALLING}} & \\ \hline V_{\text{UVLO-H}} & V_{\text{IN}} \text{Rising} \\ \hline V_{\text{UVLO-HYS}} & \\ \hline T_{\text{SS}} & \text{From enable to output regulation} \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Notes: 1. Guaranteed by design.

2. Not tested in production and guaranteed by over-temperature correlation.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.