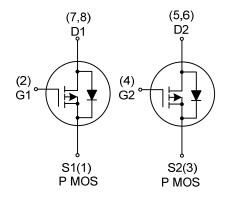


UNISONIC TECHNOLOGIES CO., LTD

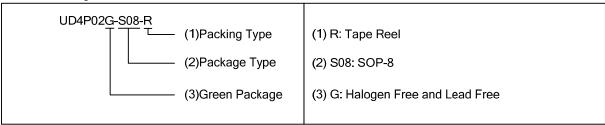
UD4P02 Preliminary Power MOSFET

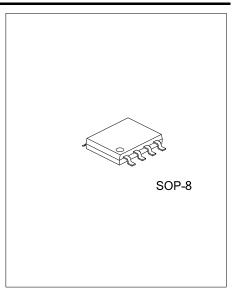
-4.0A, -20V DUAL P-CHANNEL POWER MOSFET


■ DESCRIPTION

The UTC **UD4P02** uses advanced technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is manufacturing reproducible. The UTC **UD4P02** is suitable for applications, such as battery management in nomadic equipment and power management in cellular phone.

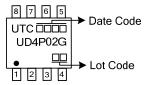
- * $R_{DS(ON)}$ < 80 m Ω @ V_{GS} =-10 V, I_D =-2.0A
- * Low on-resistance
- * Rugged avalanche characteristic
- * Easy automated surface mount assembly with standard outline
- * Low threshold drive





ORDERING INFORMATION

Ordering Number	Package	Pin Assignment							Dooking	
Ordering Number		1	2	3	4	5	6	7	8	Packing
UD4P02G-S08-R	SOP-8	S1	G1	S2	G2	D2	D2	D1	D1	Tape Reel


Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 6

■ MARKING

■ ABSOLUTE MAXIMUM RATINGS (unless otherwise specified.)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage (V _{GS} =0V)		V_{DSS}	-20	V
Drain-Gate Voltage ($R_{GS} = 20k\Omega$)		V_{DGR}	-20	V
Gate-Source Voltage		V_{GSS}	±16	>
Continuous Drain Current (T _C =25°C, Single Operation)		I _D	-4	Α
Pulsed Drain Current (Note 2)		I _{DM}	-16	Α
Power Dissipation (T _C =25°C)	Dual Operation Single Operation	P _D	1.6	W
Junction Temperature	<u> </u>	TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

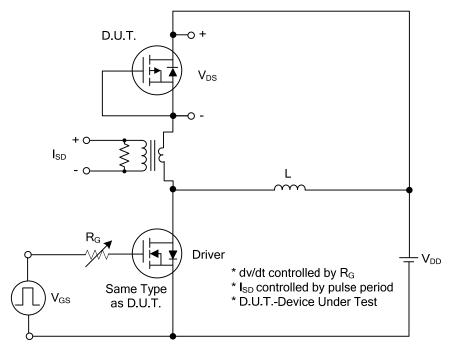
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
lunation to Ambient	Single Operation	0	62.5	°C/W
Junction to Ambient	Dual Operation	$ heta_{JA}$	78	°C/W

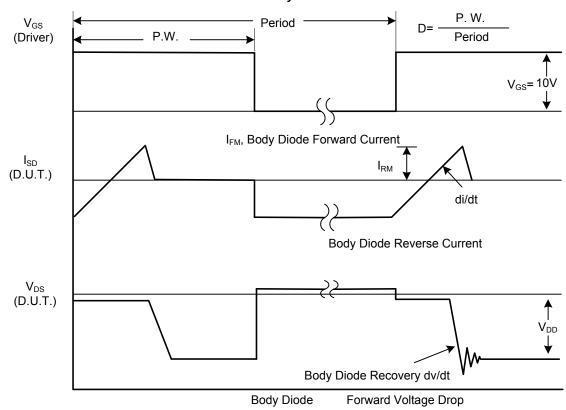
Note: When Mounted on 0.5 in² pad of 2oz. copper

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D = -250 \mu A$, $V_{GS} = 0 V$	-20			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-20 V, V _{GS} =0 V			-1	μA			
Gate- Source Leakage Current	I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA			
ON CHARACTERISTICS (Note 1)									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1.0	-1.6	-2.5	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =-10 V, I_{D} =-2.0A		70	80	mΩ			
		V_{GS} =-4.5 V, I_{D} =-2.0A		85	100	mΩ			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}	\/ - 25\/\/ -0\/		1350		pF			
Output Capacitance	Coss	V _{DS} =-25 V, V _{GS} =0 V -f=1MHz		490		pF			
Reverse Transfer Capacitance	C _{RSS}	I – TIVITIZ		130		pF			
SWITCHING PARAMETERS									
Turn-ON Delay Time	$t_{D(ON)}$			25		ns			
Turn-ON Rise Time	t _R	V _{DD} =-15V, I _D =-2A ,		35		ns			
Turn-OFF Delay Time	t _{D(OFF)}	V_{GS} =-4.5 V, R_{G} =4.7 Ω		125		ns			
Turn-OFF Fall-Time	t_{F}			35		ns			
Total Gate Charge	Q_{G}	V _{DD} =-24 V. V _{GS} =-5 V		12.5	16	nC			
Gate Source Charge	Q_GS	V _{DD} =-24 V, V _{GS} =-5 V I _D =-4 A		5		nC			
Gate Drain Charge	Q_GD	ID4 A		3		nC			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Drain-Source Diode Forward Voltage (Note 1)	V_{SD}	I _{SD} =-4 A, V _{GS} =0 V			-1.2	V			
Maximum Continuous Drain-Source Diode					-4	_			
Forward Current	I _{SD}				-4	Α			
Maximum Pulsed Drain-Source Diode	I _{SDM}				-16	Α			
Forward Current (Note 2)					-10	^			
Reverse Recovery Time	t _{rr}	I _{SD} =-4A, V _{DD} =-15V		45		ns			
Reverse Recovery Charge	Q_RR	dI/dt =100A/μs, T _J =150°C		36		nC			

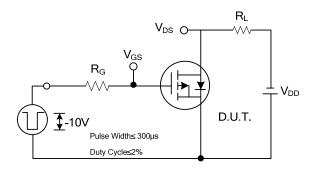

Notes: 1. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 1.5 %.

^{2.} Pulse width limited by safe operating area.

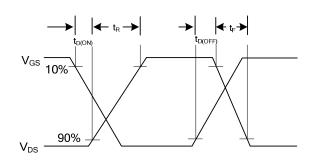


^{2.} Pulse width limited by safe operating area.

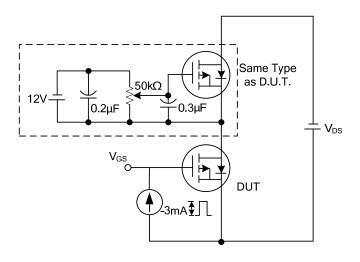
■ TEST CIRCUITS AND WAVEFORMS

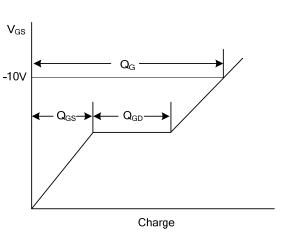


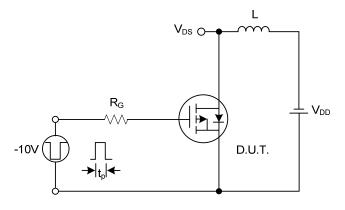
Peak Diode Recovery dv/dt Test Circuit

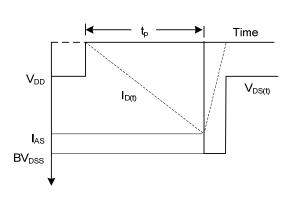


Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

